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Abstract. The aim of Search Based Software Engineering (SBSE) research is to move soft-
ware engineering problems from human-based search to machine-based search, using a variety
of techniques from the metaheuristic search, operations research and evolutionary computa-
tion paradigms. The idea is to exploit humans’ creativity and machines’ tenacity and reliabil-
ity, rather than requiring humans to perform the more tedious, error prone and thereby costly
aspects of the engineering process. SBSE can also provide insights and decision support. This
tutorial will present the reader with a step-by-step guide to the application of SBSE tech-
niques to Software Engineering. It assumes neither previous knowledge nor experience with
Search Based Optimisation. The intention is that the tutorial will cover sufficient material to
allow the reader to become productive in successfully applying search based optimisation to
a chosen Software Engineering problem of interest.

1 Introduction

Search Based Software Engineering (SBSE) is the name given to a body of work in which Search
Based Optimisation is applied to Software Engineering. This approach to Software Engineering
has proved to be very successful and generic. It has been a subfield of software engineering for
ten years [45], the past five of which have been characterised by an explosion of interest and
activity [48]. New application areas within Software Engineering continue to emerge and a body of
empirical evidence has now accrued that demonstrates that the search based approach is definitely
here to stay.

SBSE seeks to reformulate Software Engineering problems as ‘search problems’ [45, 48]. This
is not to be confused with textual or hypertextual searching. Rather, for Search Based Software
Engineering, a search problem is one in which optimal or near optimal solutions are sought in a
search space of candidate solutions, guided by a fitness function that distinguishes between better
and worse solutions. The term SBSE was coined by Harman and Jones [45] in 2001, which was the
first paper to advocate Search Based Optimisation as a general approach to Software Engineering,
though there were other authors who had previously applied search based optimisation to aspects
of Software Engineering.

SBSE has been applied to many fields within the general area of Software Engineering, some of
which are already sufficiently mature to warrant their own surveys. For example, there are surveys
and overviews, covering SBSE for requirements [111], design [78] and testing [3, 4, 65], as well as
general surveys of the whole field of SBSE [21,36,48].

This paper does not seek to duplicate these surveys, though some material is repeated from
them (with permission), where it is relevant and appropriate. Rather, this paper aims to provide



those unfamiliar with SBSE with a tutorial and practical guide. The aim is that, having read this
paper, the reader will be able to begin to develop SBSE solutions to a chosen software engineering
problem and will be able to collect and analyse the results of the application of SBSE algorithms.

By the end of the paper, the reader (who is not assumed to have any prior knowledge of SBSE)
should be in a position to prepare their own paper on SBSE. The tutorial concludes with a simple
step-by-step guide to developing the necessary formulation, implementation, experimentation and
results required for the first SBSE paper. The paper is primarily aimed at those who have yet to
tackle this first step in publishing results on SBSE. For those who have already published on SBSE,
many sections can easily be skipped, though it is hoped that the sections on advanced topics, case
studies and the SBSE taxonomy (Sections 7, 8 and 9) will prove useful, even for seasoned Search
Based Software Engineers.

The paper contains extensive pointers to the literature and aims to be sufficiently comprehensive,
complete and self-contained that the reader should be able to move from a position of no prior
knowledge of SBSE to one in which he or she is able to start to get practical results with SBSE
and to consider preparing a paper for publication on these results.

The field of SBSE continues to grow rapidly. Many exciting new results and challenges regularly
appear. It is hoped that this tutorial will allow many more Software Engineering researchers to
explore and experiment with SBSE. We hope to see this work submitted to (and to appear in) the
growing number of conferences, workshops and special issue on SBSE as well as the general software
engineering literature.

The rest of the paper is organised as follows. Section 2 briefly motivates the paper by setting
out some of the characteristics of SBSE that have made it well-suited to a great many Software
Engineering problems, making it very widely studied. Sections 3 and 4 describe the most commonly
used algorithms in SBSE and the two key ingredients of representation and fitness function. Section 5
presents a simple worked example of the application of SBSE principles in Software Engineering,
using Regression Testing as an exemplar. Section 6 presents an overview of techniques commonly
used to understand, analyse and interpret results from SBSE. Section 7 describes some of the more
advanced techniques that can be used in SBSE to go beyond the simple world of single objectives
for which we seek only to find an optimal result. Section 8 presents four case studies of previous
work in SBSE, giving examples of the kinds of results obtained. These cover a variety of topics and
involve very different software engineering activities, illustrating how generic and widely applicable
SBSE is to a wide range of software engineering problem domains. Section 9 presents a taxonomy of
problems so far investigated in SBSE research, mapping these onto the optimisation problems that
have been formulated to address these problems. Section 10 describes the next steps a researcher
should consider in order to conduct (and submit for publication) their first work on SBSE. Finally,
Section 11 presents potential limitations of SBSE techniques and ways to overcome them.

2 Why SBSE?

As pointed out by Harman, Mansouri and Zhang [48] Software Engineering questions are often
phrased in a language that simply cries out for an optimisation-based solution. For example, a
Software Engineer may well find themselves asking questions like these [48]:

1. What is the smallest set of test cases that cover all branches in this program?

2. What is the best way to structure the architecture of this system?



3. What is the set of requirements that balances software development cost and customer satis-
faction?

4. What is the best allocation of resources to this software development project?

5. What is the best sequence of refactoring steps to apply to this system?

All of these questions and many more like them, can (and have been) addressed by work on
SBSE [48]. In this section we briefly review some of the motivations for SBSE to give a feeling for
why it is that this approach to Software Engineering has generated so much interest and activity.

1. Generality
As the many SBSE surveys reveal, SBSE is very widely applicable. As explained in Section 3,
we can make progress with an instance of SBSE with only two definitions: a representation of
the problem and a fitness function that captures the objective or objectives to be optimised. Of
course, there are few Software Engineering problems for which there will be no representation,
and the readily available representations are often ready to use ‘out of the box’ for SBSE.
Think of a Software Engineering problem. If you have no way to represent it then you cannot
get started with any approach, so problem representation is a common starting point for any
solution approach, not merely for SBSE. It is also likely that there is a suitable fitness function
with which one could start experimentation since many software engineering metrics are readily
exploitable as fitness functions [42].

2. Robustness.
SBSE’s optimisation algorithms are robust. Often the solutions required need only to lie within
some specified tolerance. Those starting out with SBSE can easily become immersed in ‘param-
eter tuning’ to get the most performance from their SBSE approach. However, one observation
that almost all those who experiment will find, is that the results obtained are often robust
to the choice of these parameters. That is, while it is true that a great deal of progress and
improvement can be made through tuning, one may well find that all reasonable parameter
choices comfortably outperform a purely random search. Therefore, if one is the first to use
a search based approach, almost any reasonable (non extreme) choice of parameters may well
support progress from the current ‘state of the art’.

3. Scalability Through Parallelism.
Search based optimisation techniques are often referred to as being ‘embarrassingly parallel’
because of their potential for scalability through parallel execution of fitness computations.
Several SBSE authors have demonstrated that this parallelism can be exploited in SBSE work
to obtain scalability through distributed computation [12, 62, 69]. Recent work has also shown
how General Purpose Graphical Processing devices (GPGPUs) can be used to achieve scale up
factors of up to 20 compared to single CPU-based computation [110].

4. Re-unification.
SBSE can also create linkages and relationships between areas in Software Engineering that
would otherwise appear to be completely unrelated. For instance, the problems of Requirements
Engineering and Regression Testing would appear to be entirely unrelated topics; they have their
own conferences and journals and researchers in one field seldom exchange ideas with those from
the other.

However, using SBSE, a clear relationship can be seen between these two problem domains [48].
That is, as optimisation problems they are remarkably similar as Figure 1 illustrates: Both
involve selection and prioritisation problems that share a similar structure as search problems.



Fig. 1. Requirements Selection and Regression Testing: two different areas of Software Engineering that are
Re-unified by SBSE (This example is taken from the recent survey [48]). The task of selecting requirements
is closely related to the problem of selecting test cases for regression testing. We want test cases to cover code
in order to achieve high fitness, whereas we want requirements to cover customer expectations. Furthermore,
both regression test cases and requirements need to be prioritised. We seek to order requirements ensure
that, should development be interrupted, then maximum benefit will have been achieved for the customer
at the least cost. We seek to order test cases to ensure that, should testing be stopped, then maximum
achievement of test objectives is achieved with minimum test effort.



5. Direct Fitness Computation.
In engineering disciplines such as mechanical, chemical, electrical and electronic engineering,
search based optimisation has been applied for many years. However, it has been argued that
it is with Software Engineering, more than any other engineering discipline, that search based
optimisation has the highest application potential [39]. This argument is based on the nature of
software as a unique and very special engineering ‘material’, for which even the word ‘engineering
material’ is a slight misnomer. After all, software is the only engineering material that can only
be sensed by the mind and not through any of the five senses of sight, sounds, smell, taste and
touch.
In traditional engineering optimisation, the artefact to be optimised is often simulated pre-
cisely because it is of physical material, so building mock ups for fitness computation would be
prohibitively slow and expensive. By contrast, software has no physical existence; it is purely
a ‘virtual engineering material’. As a result, the application of search based optimisation can
often be completely direct; the search is performed directly on the engineering material itself,
not a simulation of a model of the real material (as with traditional engineering optimisations).

3 Defining a Representation and Fitness function

SBSE starts with only two key ingredients [36,45]:

1. The choice of the representation of the problem.
2. The definition of the fitness function.

This simplicity makes SBSE attractive. With just these two simple ingredients the budding
Search Based Software Engineer can implement search based optimisation algorithms and get re-
sults.

Typically, a software engineer will have a suitable representation for their problem. Many prob-
lems in software engineering also have software metrics associated with them that naturally form
good initial candidates for fitness functions [42]. It may well be that a would-be Search Based Soft-
ware Engineer will have to hand, already, an implementation of some metric of interest. With a very
little effort this can be turned into a fitness function and so the ‘learning curve’ and infrastructural
investment required to get started with SBSE is among the lowest of any approach one is likely to
encounter.

4 Commonly used algorithms

Random search is the simplest form of search algorithm that appears frequently in the software
engineering literature. However, it does not utilise a fitness function, and is thus unguided, often
failing to find globally optimal solutions (Figure 2). Higher quality solutions may be found with
the aid of a fitness function, which supplies heuristic information regarding the areas of the search
space which may yield better solutions and those which seem to be unfruitful to explore further.
The simplest form of search algorithm using fitness information in the form of a fitness function
is Hill Climbing. Hill Climbing selects a point from the search space at random. It then examines
candidate solutions that are in the ‘neighbourhood’ of the original; i.e. solutions in the search space
that are similar but differ in some aspect, or are close or some ordinal scale. If a neighbouring
candidate solution is found of improved fitness, the search ‘moves’ to that new solution. It then



explores the neighbourhood of that new candidate solution for better solutions, and so on, until the
neighbourhood of the current candidate solution offers no further improvement. Such a solution is
said to be locally optimal, and may not represent globally optimal solutions (as in Figure 3a), and
so the search is often restarted in order to find even better solutions (as in Figure 3b). Hill Climbing
may be restarted as many times as computing resources allow.

Pseudo-code for Hill Climbing can be seen in Figure 4. As can be seen, not only must the fitness
function and the ‘neighbourhood’ be defined, but also the type of ‘ascent strategy’. Types of ascent
strategy include ‘steepest ascent’, where all neighbours are evaluated, with the ascending move
made to the neighbour offering the greatest improvement in fitness. A ‘random’ or ‘first’ ascent
strategy, on the other hand, involves the evaluation of neighbouring candidate solutions at random,
and the first neighbour to offer an improvement selected for the move.

Space of all possible solutions

portion of 
search space 

containing globally 
optimal solutions

randomly-generated
solutions

Fig. 2. Random search may fail to find optimal solutions occupying a small proportion of the overall search
space (adapted from McMinn [66])

Simulated Annealing (Figure 5), first proposed by Kirkpatrick et al. [56], is similar to Hill
Climbing in that it too attempts to improve one solution. However, Simulated Annealing attempts
to escape local optima without the need to continually restart the search. It does this by tem-
porarily accepting candidate solutions of poorer fitness, depending on the value of a variable known
as the temperature. Initially the temperature is high, and free movement is allowed through the
search space, with poorer neighbouring solutions representing potential moves along with better
neighbouring solutions. As the search progresses, however, the temperature reduces, making moves
to poorer solutions more and more unlikely. Eventually, freezing point is reached, and from this
point on the search behaves identically to Hill Climbing. Pseudo-code for the Simulated Anneal-
ing algorithm can be seen in Figure 6. The probability of acceptance p of an inferior solution is
calculated as p = e−

δ
t , where δ is the difference in fitness value between the current solution and

the neighbouring inferior solution being considered, and t is the current value of the temperature
control parameter.

‘Simulated Annealing’ is named so because it was inspired by the physical process of annealing;
the cooling of a material in a heat bath. When a solid material is heated past its melting point
and then cooled back into its solid state, the structural properties of the final material will vary
depending on the rate of cooling.
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(b) A restart resulting in a climb to the global optimum

Fig. 3. Hill Climbing seeks to improve a single solution, initially selected at random, by iteratively exploring
its neighbourhood (adapted from McMinn [66])

Select a starting solution s ∈ S
Repeat

Select s′ ∈ N(s) such that fit(s′) > fit(s) according to ascent strategy
s← s′

Until fit(s) ≥ fit(s′),∀s′ ∈ N(s)

Fig. 4. High level description of a hill climbing algorithm, for a problem with solution space S; neighbour-
hood structure N ; and fit, the fitness function to be maximised (adapted from McMinn [65])



Hill Climbing and Simulated Annealing are said to be local searches, because they operate with
reference to one candidate solution at any one time, choosing ‘moves’ based on the neighbourhood
of that candidate solution. Genetic Algorithms, on the other hand, are said to be global searches,
sampling many points in the search space at once (Figure 7), offering more robustness to local
optima. The set of candidate solutions currently under consideration is referred to as the current
population, with each successive population considered referred to as a generation. Genetic Algo-
rithms are inspired by Darwinian Evolution, in keeping with this analogy, each candidate solution
is represented as a vector of components referred to as individuals or chromosomes. Typically, a
Genetic Algorithm uses a binary representation, i.e. candidate solutions are encoded as strings of
1s and 0s; yet more natural representations to the problem may also be used, for example a list of
floating point values.

The main loop of a Genetic Algorithm can be seen in Figure 8. The first generation is made
up of randomly selected chromosomes, although the population may also be ‘seeded’ with selected
individuals representing some domain information about the problem, which may increase the
chances of the search converging on a set of highly-fit candidate solutions. Each individual in the
population is then evaluated for fitness.

On the basis of fitness evaluation, certain individuals are selected to go forward to the following
stages of crossover, mutation and reinsertion into the next generation. Usually selection is biased
towards the fitter individuals, however the possibility of selecting weak solutions is not removed
so that the search does not converge early on a set of locally optimal solutions. The very first
Genetic Algorithm, proposed by Holland4, used ‘fitness-proportionate’ selection, where the expected
number of times an individual is selected for reproduction is proportionate to the individual’s
fitness in comparison with the rest of the population. However, fitness-proportionate selection has
been criticised because highly-fit individuals appearing early in the progression of the search tend
to dominate the selection process, leading the search to converge prematurely on one sub-area
of the search space. Linear ranking [100] and tournament selection [23] have been proposed to
circumvent these problems, involving algorithms where individuals are selected using relative rather
than absolute fitness comparisons.

In the crossover stage, elements of each individual are recombined to form two offspring indi-
viduals. Different choices of crossover operator are available, including ‘one-point’ crossover, which
splices two parents at a randomly-chosen position in the string to form two offspring. For example,
two strings ‘111’ and ‘000’ may be spliced at position 2 to form two children ‘100’ and ‘011’. Other
operators may recombine using multiple crossover points, while ‘uniform’ crossover treats every
position as a potential crossover point.

Subsequently, elements of the newly-created chromosomes are mutated at random, with the
aim of diversifying the search into new areas of the search space. For GAs operating on binary
representation, mutation usually involves randomly flipping bits of the chromosome. Finally, the
next generation of the population is chosen in the ‘reinsertion’ phase, and the new individuals
are evaluated for fitness. The GA continues in this loop until it finds a solution known to be
globally optimal, or the resources allocated to it (typically a time limit or a certain budget of fitness
evaluations) are exhausted. Whitley’s tutorial papers [101,102] offer a further excellent introductory
material for getting starting with Genetic Algorithms in Search Based Software Engineering.

4 This was introduced by Holland [54], though Turing had also briefly mentioned the idea of evolution as
a computational metaphor [94].
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Fig. 5. Simulated Annealing also seeks to improve a single solution, but moves may be made to points in
the search space of poorer fitness (adapted from McMinn [66])

Select a starting solution s ∈ S
Select an initial temperature t > 0
Repeat

it← 0
Repeat

Select s′ ∈ N(s) at random
∆e← fit(s)− fit(s′)
If ∆e < 0

s← s′

Else
Generate random number r, 0 ≤ r < 1

If r < e−
δ
t Then s← s′

End If
it← it+ 1

Until it = num solns
Decrease t according to cooling schedule

Until Stopping Condition Reached

Fig. 6. High level description of a simulated annealing algorithm, for a problem with solution space S;
neighbourhood structure N ; num solns, the number of solutions to consider at each temperature level t;
and fit, the fitness function to be maximised (adapted from McMinn [65])
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Fig. 7. Genetic Algorithms are global searches, taking account of several points in the search space at once
(adapted from McMinn [66])

Randomly generate or seed initial population P
Repeat

Evaluate fitness of each individual in P
Select parents from P according to selection mechanism
Recombine parents to form new offspring
Construct new population P ′ from parents and offspring
Mutate P ′

P ← P ′

Until Stopping Condition Reached

Fig. 8. High level description of a Genetic Algorithm, adapted from McMinn [65]



5 Getting The First Result: A Simple Example for Regression Testing

This section presents an application of a search-based approach to the Test Case Prioritisation
(TCP) in regression testing, illustrating the steps that are necessary to obtain the first set of results.
This makes concrete the concepts of representation, fitness function and search based algorithm (and
their operators) introduced in the previous sections. First, let us clarify what we mean by TCP.

Regression testing is a testing activity that is performed to gain confidence that the recent
modifications to the System Under Test (SUT), e.g. bug patches or new features, did not interfere
with existing functionalities [108]. The simplest way to ensure this is to execute all available tests;
this is often called retest-all method. However, as the software evolves, the test suite grows too,
eventually making it prohibitively expensive to adopt the retest-all approach. Many techniques have
been developed to deal with the cost of regression testing.

Test Case Prioritisation represents a group of techniques that particularly deal with the permu-
tations of tests in regression test suites [28, 108]. The assumption behind these techniques is that,
because of the limited resources, it may not be possible to execute the entire regression test suite.
The intuition behind Test Case Prioritisation techniques is that more important tests should be
executed earlier. In the context of regression testing, the ‘important’ tests are the ones that detect
regression faults. That is, the aim of Test Case Prioritisation is to maximise earlier fault detection
rate. More formally, it is defined as follows:

Definition 1 Test Case Prioritisation Problem

Given: a test suite, T , the set of permutations of T , PT , and a function from PT to real numbers,
f : PT → R.

Problem: to find T ′ ∈ PT such that (∀T ′′)(T ′′ ∈ PT )(T ′′ 6= T ′)[f(T ′) ≥ f(T ′′)].

Ideally, the function f should be a mapping from tests to their fault detection capability. How-
ever, whether a test detects some faults or not is only known after its execution. In practice, a
function f that is a surrogate to the fault detection capability of tests is used. Structural coverage
is one of the most popular choices: the permutation of tests that achieves structural coverage as
early as possible is thought to maximise the chance of early fault detection.

5.1 Representation

At its core, TCP as a search problem is an optimisation in a permutation space similar to the
Travelling Salesman Problem (TSP), for which many advanced representation schemes have been
developed. Here we will focus on the most basic form of representation. The set of all possible
candidate solutions is the set of all possible permutations of tests in the regression test suite. If
the regression test suite contains n tests, the representation takes the form of a vector with n
elements. For example, Figure 9 shows one possible candidate solution for TCP with size n, i.e.
with a regression test suite that contains 6 tests, {t0, . . . , t5}.

Depending on the choice of the search algorithm, the next step is either to define the neighbouring
solutions of a given solution (local search) or to define the genetic operators (genetic algorithm).
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Fig. 9. One possible candidate solution for TCP with a regression test suite with 6 tests, {t0, . . . , t5}.

Neighbouring Solutions Unless the characteristics of the search landscape is known, it is recom-
mended that the neighbouring solutions of a given solution for a local search algorithm is generated
by making the smallest possible changes to the given solution. This allows the human engineer to
observe and understand the features of the search landscape.

It is also important to define the neighbouring solutions in a way that produces a manageable
number of neighbours. For example, if the set of neighbouring solutions for TCP of size n is defined
as the set of all permutations that can be generated by swapping two tests, there would be n(n−
1) neighbouring solutions. However, if we only consider swapping adjacent tests, there would be
n − 1. If the fitness evaluation is expensive, i.e. takes non-trivial time, controlling the size of the
neighbourhood may affect the efficiency of the search algorithm significantly.

Genetic Operators The following is a set of simple genetic operators that can be defined over
permutation-based representations.

– Selection: Selection operators tend to be relatively independent of the choice of representation.
It is more closely related to the design of the fitness function. One widely used approach that
is also recommended as the first step is n-way tournament selection. First, randomly sample n
solutions from the population. Out of this sample, pick the fittest individual solution. Repeat
once again to select a pair of solutions for reproduction.

– Crossover: Unlike selection operators, crossover operators are directly linked to the structure
of the representation of solutions. Here, we use the crossover operator following Antoniol et
al. [6] to generate, from parent solutions p1 and p2, the offspring solutions o1 and o2:

1. Pick a random number k (1 ≤ k ≤ n)
2. The first k elements of p1 become the first k elements of o1.
3. The last n − k elements of o1 are the sequence of n − k elements that remain when the k

elements selected from p1 are taken from p2, as illustrated in Figure 10.
4. o2 is generated similarly, composed of the first n − k elements of p2 and the remaining k

elements of p1.

– Mutation: Similarly to defining the neighbouring solutions for local search algorithms, it is rec-
ommended that, initially, mutation operators are defined to introduce relatively small changes
to individual solutions. For example, we can swap the position of two randomly selected tests.

5.2 Fitness Function

The recommended first step to design the fitness function is to look for an existing metric that
measures the quality we are optimising for. If one exists, it often provides not only a quick and
easy way to evaluate the search-based approach to the problem but also a channel to compare the
results to other existing techniques.
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Fig. 10. Illustration of crossover operator for permutation-based representations following Antoniol et al.

The metric that is widely used to evaluate the effectiveness of TCP techniques is Average
Percentage of Faults Detected (APFD) [28]. Higher APFD values mean that faults are detected
earlier in testing. Suppose that, as the testing progresses, we plot the percentage of detected faults
against the number of tests executed so far: intuitively, APFD would be the area behind the plot.

However, calculation of APFD requires the knowledge of which tests detected which faults. As
explained in Section 5, the use of this knowledge defies the purpose of the prioritisation because
fault detection information is not available until all tests are executed. This forces us to turn to
the widely used surrogate, structural coverage. For example, Average Percentage of Blocks Covered
(APBC) is calculated in a similar way to APFD but, instead of percentage of detected faults,
percentage of blocks covered so far is used. In regression testing scenarios, the coverage information
of tests are often available from the previous iteration of testing. While the recent modification
that we are testing against might have made the existing coverage information imprecise, it is often
good enough to provide guidance for prioritisation, especially when regression testing is performed
reasonably frequently.

5.3 Putting It All Together

The representation of solutions and the fitness function are the only problem-specific components
in the overall architecture of SBSE approach in Figure 11. It is recommended that these problem
specific components are clearly separated from the search algorithm itself: the separation not only
makes it easier to reuse the search algorithms (that are problem independent) but also helps testing
and debugging of the overall approach (repeatedly used implementations of search algorithms can
provide higher assurance).

6 Understanding your results

6.1 Fair comparison

Due to the stochastic nature of optimisation algorithms, searches must be repeated several times in
order to mitigate against the effects of random variation. In the literature, experiments are typically
repeated 30-50 times.

When comparing two algorithms, the best fitness values obtained by the searches concerned
are an obvious indicator to how well the optimisation process performed. However, in order to
ensure a fair comparison, it is important to establish the amount of effort expended by each search
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Fig. 11. Overall Architecture of SBSE Approach

algorithm, to find those solutions. This effort is commonly measured by logging the number of fitness
evaluations that were performed. For example, it could be that an algorithm found a solution with
a better fitness value, but did so because it was afforded a higher number of trials in which to
obtain it. Or, there could be trade-offs, for example search A may find a solution of good fitness
early in the search, but fail to improve it, yet search B can find solutions of slightly better fitness,
but requiring many more fitness evaluations in which to discover it. When a certain level of fitness
is obtained by more than one search algorithm, the average number of fitness evaluations over the
different runs of the experiments by each algorithm is used to measure the cost of the algorithm in
obtaining that fitness, or to put it another way, its relative efficiency.

For some types of problem, e.g. test data generation, there is a specific goal that must be attained
by the search; for example the discovery of test data to execute a particular branch. In such cases,
merely ‘good’ solutions of high fitness are not enough - a solution with a certain very high fitness
value must be obtained, or the goal of the search will not be attained. In such cases, best fitness is
no longer as an important measure as the success rate, a percentage reflecting the number of times
the goal of the search was achieved over the repetitions of the experiment. The success rate gives
an idea of how effective the search was at achieving its aim.

6.2 Elementary statistical analysis

The last section introduced some descriptive statistics for use in Search Based Software Engineering
experiments, but also inferential statistics may be applied to discern whether one set of experiments
are significantly different in some aspect from another.

Suppose there are two approaches to address a problem in SBSE, each of which involves the
application of some search based algorithm to a set of problem instances. We collect results for the
application of both algorithms, A and B, and we notice that, over a series of runs of our experiment,
Algorithm A tends to perform better than Algorithm B. The performance we have in mind, may
take many forms. It may be that Algorithm A is faster than B, or that after a certain number of
fitness evaluations it has achieved a higher fitness value, or a higher average fitness. Alternatively,
there may be some other measurement that we can make about which we notice a difference in
performance that we believe is worth reporting.

In such cases, SBSE researchers tend to rely on inferential statistics as a means of addressing
the inherently stochastic nature of search based algorithms. That is, we may notice that the mean
fitness achieved by Algorithm A is higher than that of Algorithm B after 10 executions of each,



but how can we be sure that this is not merely an observation arrived at by chance? It is to answer
precisely these kinds of question that statistical hypothesis testing is used in the experimental
sciences, and SBSE is no exception.

A complete explanation of the issues and techniques that can be used in applying inferential
statistics in SBSE is beyond the scope of this tutorial. However, there has been a recent paper on
the topic of statistical testing of randomised algorithms by Arcuri and Briand [8], which provides
more detail. In this section we provide an overview of some of the key points of concern.

The typical scenario with which we are concerned is one in which we want to explore the
likelihood that our experiments found that Algorithm A outperforms Algorithm B purely by chance.
Usually we wish to be in a position to make a claim that we have evidence that suggests that
Algorithm A is better than Algorithm B. For example, as a sanity check, we may wish to show
that our SBSE technique comfortably outperforms a random search. But what do we mean by
‘comfortably outperforms’?

In order to investigate this kind of question we set a threshold on the degree of chance that
we find acceptable. Typically, in the experimental sciences, this level is chosen to be either 1% or
5%. That is, we will have either a less than 1 in 100 or a less than 5 in 100 chance of believing
that Algorithm A outperforms Algorithm B based on a set of executions when in fact it does not.
This is the chance of making a so-called ‘Type I’ error. It would lead to us concluding that some
Algorithm A was better than Algorithm B when, in fact, it was not.

If we choose a threshold for error of 5% then we have a 95% confidence level in our conclusion
based on our sample of the population of all possible executions of the algorithm. That is, we are
‘95% sure that we can claim that Algorithm A really is better than Algorithm B’. Unpacking this
claim a little, what we find is that there is a population involved. This is the population of all
possible runs of the algorithm in question. For each run we may get different behaviour due to the
stochastic nature of the algorithm and so we are not in a position to say exactly what the value
obtained will be. Rather, we can give a range of values.

However, it is almost always impractical to perform all possible runs and so we have to sample.
Our ‘95% confidence claim’ is that we are 95% confident that the evidence provided by our sample
allows us to infer a conclusion about the algorithm’s performance on the whole population. This is
why this branch of statistics is referred to as ‘inferential statistics’; we infer properties of a whole
population based on a sample.

Unfortunately a great deal of ‘ritualistic’ behaviour has grown up around the experimental
sciences, in part, resulting for an inadequate understanding of the underlying statistics. One aspect
of this ritual is found in the choice of a suitable confidence level. If we are comparing some new
SBSE approach to the state of the art, then we are asking a question as to whether the new approach
is worthy of consideration. In such a situation we may be happy with a 1 in 10 chance of a Type I
error (and could set the confidence level, accordingly, to be 90%). The consequences of considering
a move from the status quo may not be so great.

However, if we are considering whether to use a potently fatal drug on a patient who may
otherwise survive we might want a much higher confidence that the drug would, indeed, improve
the health of the patent over the status quo (no treatment). For this reason it is important to think
about what level of confidence is suitable for the problem in hand.

The statistical test we perform will result in a p-value. The p-value is the chance that a Type
I error has occurred. That is, we notice that a sample of runs produces a higher mean result for
a measurement of interest for Algorithm A than for Algorithm B. We wish to reject the so-called
‘null hypothesis’; the hypothesis that the population of all executions of Algorithm A is no different



to that of Algorithm B. To do this we perform an inferential statistical test. If all the assumptions
of the test are met and the sample of runs we have is unbiased then the p-value we obtain indicates
the chance that the populations of runs of Algorithm A and Algorithm B are identical given the
evidence we have from the sample. For instance a p-value equal to or lower than 0.05 indicates
that we have satisfied the traditional (and somewhat ritualistic) 95% confidence level test. More
precisely, the chance of committing a Type I error is p.

This raises the question of how large a sample we should choose. The sample size is related to
the statistical power of our experiment. If we have too small a sample then we may obtain high
p-values and incorrectly conclude that there is no significant difference between the two algorithms
we are considering. This is a so-called Type II error; we incorrectly accept the null hypothesis when
it is, in fact, false. In our case it would mean that we would incorrectly believe Algorithm A to be
no better than Algorithm B. More precisely, we would conclude, correctly, that we have no evidence
to claim that Algorithm A is significantly better than Algorithm B at the chosen conference level.
However, had we chosen a larger sample, we may have had just such evidence. In general, all else
being equal, the larger the sample we choose the less likely we are to commit a Type II error. This
is why researchers prefer larger sample sizes where this is feasible.

There is another element of ritual for which some weariness is appropriate: the choice of a
suitable statistical test. One of the most commonalty performed tests in work on search based
algorithms in general (though not necessarily SBSE in particular) is the well-known t test. Almost
all statistical packages support it and it is often available at the touch of a button. Unfortunately,
the t test makes assumptions about the distribution of the data. These assumptions may not be
borne out in practice thereby increasing the chance of a Type I error. In some senses a type I error
is worse than a Type II error, because it may lead to the publication of false claims, whereas a
Type I error will most likely lead to researcher disappointment at the lack of evidence to support
publishable results.

To address this potential problem with parametric inferential statistics SBSE researchers often
use nonparametric statistical tests. Non-parametric tests make fewer assumptions about the distri-
bution of the data. As such, these tests are weaker (they have less power) and may lead to the false
acceptance of the null hypothesis for the same sample size (a Type II error), when used in place
of a more powerful parametric test that is able to reject the null hypothesis. However, since the
parametric tests make assumptions about the distribution, should these assumptions prove to be
false, then the rejection of the null hypothesis by a parametric test may be an artefact of the false
assumptions; a form of Type I error.

It is important to remember that all inferential statistical techniques are founded on probability
theory. To the traditional computer scientist, particularly those raised on an intellectual diet con-
sisting exclusively of formal methods and discrete mathematics, this reliance on probability may be
as unsettling as quantum mechanics was to the traditional world of physics. However, as engineers,
the reliance on a confidence level is little more than an acceptance of a certain ‘tolerance’ and is
quite natural and acceptable.

This appreciation of the probability-theoretic foundations of inferential statistics rather than a
merely ritualistic application of ‘prescribed tests’ is important if the researcher is to avoid mistakes.
For example, armed with a non parametric test and a confidence internal of 95% the researcher
may embark on a misguided ‘fishing expedition’ to find a variant of Algorithm A that outperforms
Algorithm B. Suppose 5 independent variants of Algorithm A are experimented with and, on each
occasion, a comparison is made with Algorithm B using an inferential statistical test. If variant 3



produces a p-value of 0.05, while the others do not it would be a mistake to conclude that at the
95% confidence level Algorithm A (variant 3) is better than Algorithm B.

Rather, we would have to find that Algorithm A variant 3 had a p-value lower than 0.05/5; by
repeating the same test 5 times, we raise the confidence required for each test from 0.05 to 0.01
to retain the same overall confidence. This is known as a ‘Bonferroni correction’. To see why it is
necessary, suppose we have 20 variants of Algorithms A. What would be the expected likelihood
that one of these would, by chance, have a p-value equal or lower than 0.05 in a world where none
of the variants is, in fact, any different from Algorithm B? If we repeat a statistical test sufficiently
many times without a correction to the confidence level, then we are increasingly likely to commit
a Type I error. This situation is amusingly captured by an xkcd cartoon [73].

Sometimes, we find ourselves comparing, not vales of measurements, but the success rates of
searches. Comparison of success rates using inferential statistics requires a categorical approach,
since a search goal is either fulfilled or not. For this Fisher’s Exact test is a useful statistical measure.
This is another nonparametric test. For investigative of correlations, researchers use Spearman and
Pearson correlation analysis. These tests can be useful to explore the degree to which increases in
one factor are correlated to another, but it is important to understand that correlations does not,
of course, entail causality.

7 More advanced techniques

Much has been achieved in SBSE using only a single fitness function, a simple representation of
the problem and a simple search technique (such as hill climbing). It is recommended that, as a
first exploration of SBSE, the first experiments should concern a single fitness function, a simple
representation and a simple search technique. However, once results have been obtained and the
approach is believed to have potential, for example, it is found to outperform random search, then
it is natural to turn one’s attention to more advanced techniques and problem characterisations.

This section considers four exciting ways in which the initial set of results can be developed,
using more advanced techniques that may better model the real world scenario and may also help
to extend the range and type of results obtained and the applicability of the overall SBSE approach
for the Software Engineering problem in hand.

7.1 Multiple Objectives

Though excellent results can be obtained with a single objective, many real world Software En-
gineering problems are multiple objective problems. The objectives that have to be optimised are
often in competition with one another and may be contradictory; we may find ourselves trying to
balance the different optimisation objectives of several different goals.

One approach to handle such scenarios is the use of Pareto optimal SBSE, in which several
optimisation objectives are combined, but without needing to decide which take precedence over
the others. This approach is described in more detail elsewhere [48] and was first proposed as the
‘best’ way to handle multiple objectives for all SBSE problems by Harman in 2007 [36]. Since
then, there has been a rapid uptake of Pareto optimal SBSE to requirements [27, 31, 84, 90, 113],
planning [5,98], design [17,88,95], coding [9,99], testing [33,35,47,76,90,96,107], and refactoring [52].

Suppose a problem is to be solved that has n fitness functions, f1, . . . , fn that take some vector
of parameters x. Pareto optimality combines a set of measurements, fi, into a single ordinal scale
metric, F , as follows:



F (x1) > F (x2)
⇔

∀i.fi(x1) ≥ fi(x2) ∧ ∃i.fi(x1) > fi(x2)

Under Pareto optimality, one solution is better than another if it is better according to at
least one of the individual fitness functions and no worse according to all of the others. Under the
Pareto interpretation of combined fitness, no overall fitness improvement occurs no matter how
much almost all of the fitness functions improve, should they do so at the slightest expense of any
one of their number. The use of Pareto optimality is an alternative to simply aggregating fitness
using a weighted sum of the n fitness functions.

When searching for solutions to a problem using Pareto optimality, the search yields a set of
solutions that are non–dominated. That is, each member of the non-dominated set is no worse
than any of the others in the set, but also cannot be said to be better. Any set of non–dominated
solutions forms a Pareto front.

Consider Figure 12, which depicts the computation of Pareto optimality for two imaginary
fitness functions (Objective 1 and Objective 2). The longer the search algorithm is run the better
the approximation becomes to the real Pareto front. In the figure, points S1, S2 and S3 lie on the
Pareto front, while S4 and S5 are dominated.

Fig. 12. Pareto Optimality and Pareto Fronts (taken from the survey by Harman et al. [48]).

Pareto optimality has many advantages. Should a single solution be required, then coefficients
can be re-introduced in order to distinguish among the non–dominated set at the current Pareto
front. However, by refusing to conflate the individual fitness functions into a single aggregate, the
search may consider solutions that may be overlooked by search guided by aggregate fitness. The
approximation of the Pareto front is also a useful analysis tool in itself. For example, it may contain
‘knee points’, where a small change in one fitness is accompanied by a large change in another.
These knee points denote interesting parts of the solution space that warrant closer investigation.



7.2 Co Evolution

In Co–Evolutionary Computation, two or more populations of solutions evolve simultaneously with
the fitness of each depending upon the current population of the other. Adamopoulos et al. [2] were
the first to suggest the application of co-evolution to an SBSE problem, using it to evolve sets of
mutants and sets of test cases, where the test cases act as predators and the mutants as their prey.
Arcuri and Yao [10] use co-evolution to evolve programs and their test data from specifications
using co-evolution.

Arcuri and Yao [11] also developed a co-evolutionary model of bug fixing, in which one population
essentially seeks out patches that are able to pass test cases, while test cases can be produced from
an oracle in an attempt to find the shortcomings of a current population of proposed patches. In
this way the patch is the prey, while the test cases, once again, act as predators. The approach
assumes the existence of a specification to act the oracle.

Many aspects of Software Engineering problems lend themselves to a co-evolutionary model of
optimisation because software systems are complex and rich in potential populations that could
be productively co-evolved (using both competitive and co-operative co-evolution). For example:
components, agents, stakeholder behaviour models, designs, cognitive models, requirements, test
cases, use cases and management plans are all important aspects of software systems for which
optimisation is an important concern. Though all of these may not occur in the same system, they
are all the subject of change. If a suitable fitness function be found, the SBSE can be used to
co-evolve solutions.

Where two such populations are already being evolved in isolation using SBSE, but participate
in the same overall software system, it would seem a logical ‘next step’, to seek to evolve these
populations together; the fitness of one is likely to have an impact on the fitness of another, so
evolution in isolation may not be capable of locating the best solutions.

7.3 SBSE as Decision Support

SBSE has been most widely used to find solutions to complex and demanding software engineering
problems, such as sets of test data that meet test adequacy goals or sequences of transformations
that refactor a program or modularisation boundaries that best balance the trade off between
cohesion and coupling. However, in many other situations it is not the actual solutions found that
are the most interesting nor the most important aspects of SBSE.

Rather, the value of the approach lies in the insight that is gained through the analysis inherent
in the automated search process and the way in which its results capture properties of the structure
of software engineering solutions. SBSE can be applied to situations in which the human will decide
on the solution to be adopted, but the search process can provide insight to help guide the decision
maker.

This insight agenda, in which SBSE is used to gain insights and to provide decision support
to the software engineering decision maker has found natural resonance and applicability when
used in the early aspects of the software engineering lifecycle, where the decisions made can have
far–reaching implications.

For instance, addressing the need for negotiation and mediation in requirements engineering
decision making, Finkelstein et al. [31] explored the use of different notions of fairness to explore
the space of requirements assignments that can be said to be fair according to multiple definitions
of ‘fairness’. Saliu and Ruhe [84] used a Pareto optimal approach to explore the balance of concerns
between requirements at different levels of abstraction, while Zhang et al, showed how SBSE could be



used to explore the tradeoff among the different stakeholders in requirements assignment problems
[112].

Many of the values used to define a problem for optimisation come from estimates. This is
particularly the case in the early stages of the software engineering lifecycle, where the values
available necessarily come from the estimates made by decision makers. In these situations it is not
optimal solutions that the decision maker requires, so much as guidance on which of the estimates
are most likely to affect the solutions. Ren et al. [46] used this observation to define an SBSE
approach to requirements sensitivity analysis, in which the gaol is to identify the requirements
and budgets for which the managers’ estimates of requirement cost and value have most impact.
For these sensitive requirements and budgets, more care is required. In this way SBSE has been
used as a way to provide sensitivity analysis, rather than necessarily providing a proposed set of
requirement assignments.

Similarly, in project planning, the manager bases his or her decisions on estimates of work pack-
age duration and these estimates are notoriously unreliable. Antoniol et al. [5] used this observation
to explore the trade off between the completion time of a software project plan and the risk over
overruns due to misestimation. This was a Pareto efficient, bi–objective approach, in which the two
objectives were the completion time and the risk (measured in terms of overrun due to misestima-
tion). Using their approach, Antoniol et al., demonstrated that a decision maker could identify safe
budgets for which completion times could be more assured.

Though most of the work on decision support through SBSE has been conducted at the early
stages of the lifecycle, there are still opportunities for using SBSE to gain insight at later stages in
the lifecycle. For example, White et al. [99] used a bi-objective Pareto optimal approach to explore
the trade off between power consumption and functionality, demonstrating that it was possible to
find knee points on the Pareto front for which a small loss of functionality could result in a high
degree of improved power efficiency.

As can be seen from these examples, SBSE is not merely a research programme in which one
seeks to ‘solve’ software engineering problems; it is a rich source of insight and decision support. This
is a research agenda for SBSE that Harman has developed through a series of keynotes and invited
papers, suggesting SBSE as a source of additional insight and an approach to decision support
for predictive modelling [38], cognitive aspects of program understanding [37], multiple objective
regression testing [40] and program transformation and refactoring [41].

7.4 Augmenting with other non SBSE techniques

Often it is beneficial to augment search algorithms with other techniques, such as clustering or static
analysis of source code. There is no hard rules for augmentation: different non-SBSE techniques
can be considered appropriate depending on the context and challenge that are unique to the given
software engineering problem. This section illustrates how some widely used non-SBSE techniques
can help the SBSE approach.

Clustering Clustering is a process that partitions objects into different subsets so that objects
in each group share common properties. The clustering criterion determines which properties are
used to measure the commonality. It is often an effective way to reduce the size of the problem
and, therefore, the size of the search space: objects in the same cluster can be replaced by a single
representative object from the cluster, resulting in reduced problem size. It has been successfully
applied when the human is in the loop [109].



Static Analysis For search-based test data generation approaches, it is common that the fitness
evaluation involves the program source code. Various static analysis techniques can improve the ef-
fectiveness and the efficiency of code-related SBSE techniques. Program slicing has been successfully
used to reduce the search space for automated test data generation [43]. Program transformation
techniques have been applied so that search-based test data generation techniques can cope with
flag variables [15].

Hybridisation While hybridising different search algorithms are certainly possible, hybridisation
with non-SBSE techniques can also be beneficial. Greedy approximation has been used to inject
solutions into MOEA so that MOEA can reach the region close to the true Pareto front much
faster [107]. Some of more sophisticated forms of hybridisation use non-SBSE techniques as part of
fitness evaluation [105].

8 Case studies

This section introduces four case studies to provide the reader with a range of examples of SBSE
application in software engineering. The case studies are chosen to represent a wide range of topics,
illustrating the way in which SBSE is highly applicable to Software Engineering problem; with just
a suitable representation, fitness function and a choice of algorithm it is possible to apply SBSE
to the full spectrum of SBSE activities and problems and to obtain interesting and potentially
valuable results. The case studies cover early lifecycle activities such as effort estimation and re-
quirements assignment through test case generation to regression testing, exemplifying the breadth
of applications to which SBSE has already been put.

8.1 Case Study: Multi-Objective Test Suite Minimisation

Let us consider another class of regression testing techniques that is different from Test Case
Prioritisation studied in Section 5: test suite minimisation. Prioritisation techniques aim to generate
an ideal test execution order; minimisation techniques aim to reduce the size of the regression test
suite when the regression test suite of an existing software system grows to such an extent that it
may no longer be feasible to execute the entire test suite [80]. In order to reduce the size of the test
suite, any redundant test cases in the test suite need to be identified and removed.

Regression Testing requires optimisation because of the problem posed by large data sets. That
is, organisations with good testing policies quickly accrue large pools of test data. For example,
one of the regression test suites studied in this paper is also used for a smoke-test by IBM for one
of its middleware products and takes over 4 hours if executed in its entirety. However, a typical
smoke-test can be allocated only 1 hour maximum, forcing the engineer either to select a set of test
cases from the available pool or to prioritise the order in which the test cases are considered.

The cost of this selection or prioritisation may not be amortised if the engineer wants to apply
the process with every iteration in order to reflect the most recent test history or to use the whole
test suite more evenly. However, without optimisation, the engineer will simply run out of time
to complete the task. As a result, the engineer may have failed to execute the most optimal set
of test cases when time runs out, reducing fault detection capabilities and thereby harming the
effectiveness of the smoke test.

One widely accepted criterion for redundancy is defined in relation to the coverage achieved
by test cases [16, 20, 53, 74, 81]. If the test coverage achieved by test case t1 is a subset of the test



coverage achieved by test case t2, it can be said that the execution of t1 is redundant as long as t2 is
also executed. The aim of test suite minimisation is to obtain the smallest subset of test cases that
are not redundant with respect to a set of test requirements. More formally, test suite minimisation
problem can be defined as follows [108]:

Definition 2 Test Suite Minimisation Problem

Given: A test suite of n tests, T , a set of m test goals {r1, . . . , rm}, that must be satisfied to pro-
vide the desired ‘adequate’ testing of the program, and subsets of T , Tis, one associated with each
of the ris such that any one of the test cases tj belonging to Ti can be used to achieve requirement ri.

Problem: Find a representative set, T ′, of test cases from T that satisfies all ris.

The testing criterion is satisfied when every test-case requirement in {r1, . . . , rm} is satisfied. A
test-case requirement, ri, is satisfied by any test case, tj , that belongs to Ti, a subset of T . Therefore,
the representative set of test cases is the hitting set of Tis. Furthermore, in order to maximise the
effect of minimisation, T ′ should be the minimal hitting set of Tis. The minimal hitting-set problem
is an NP-complete problem as is the dual problem of the minimal set cover problem [34].

The NP-hardness of the problem encouraged the use of heuristics and meta-heuristics. The
greedy approach [74] as well as other heuristics for minimal hitting set and set cover problem [20,53]
have been applied to test suite minimisation but these approaches were not cost-cognisant and only
dealt with a single objective (test coverage). With the single-objective problem formulation, the
solution to the test suite minimisation problem is one subset of test cases that maximises the test
coverage with minimum redundancy.

Later, the problem was reformulated as a multi-objective optimisation problem [106]. Since the
greedy algorithm does not cope with multiple objectives very well, Multi-Objective Evolutionary
Algorithms (MOEAs) have been applied to the multi-objective formulation of the test suite minimi-
sation [63,106]. The case study presents the multi-objective formulation of test suite minimisation
introduced by Yoo and Harman [106].

Representation Test suite minimisation is at its core a set-cover problem; the main decision is
whether to include a specific test into the minimised subset or not. Therefore, we use the binary
string representation. For a test suite with n tests, {t1, . . . , tn}, the representation is a binary string
of length n: the i-th digit is 1 if ti is to be included in the subset and 0 otherwise. Binary tournament
selection, single-point crossover and single bit-flip mutation genetic operators were used for MOEAs.

Fitness Function Three different objectives were considered: structural coverage, fault history
coverage and execution cost. Structural coverage of a given candidate solution is simply the struc-
tural coverage achieved collectively by all the tests that are selected by the candidate solution (i.e.
their corresponding bits are set to 1). This information is often available from the previous iteration
of regression testing. This objective is to be maximised.

Fault history coverage is included to compliment structural coverage metric because achieving
coverage may not always increase fault detection capability. We collect all known previous faults
and calculate fault coverage for each candidate solution by counting how many of the previous faults



could have been detected by the candidate solution. The underlying assumption is that a test that
has detected faults in the past may have a higher chance of detecting faults in the new version.
This objective is to be maximised.

The final objective is execution cost. Without considering the cost, the simplest way to maximise
the other two objectives is to select the entire test suite. By trying to optimise for the cost, it is
possible to obtain the trade-off between structural/fault history coverage and the cost of achieving
them. The execution cost of each test is measured using a widely-used profiling tool called valgrind.

Algorithm A well known MOEA by Deb et al. [24], NSGA-II, was used for the case study. Pareto
optimality is used in the process of selecting individuals. This leads to the problem of selecting one
individual out of a non-dominated pair. NSGA-II uses the concept of crowding distance to make this
decision; crowding distance measures how far away an individual is from the rest of the population.
NSGA-II tries to achieve a wider Pareto frontier by selecting individuals that are far from the
others. NSGA-II is based on elitism; it performs the non-dominated sorting in each generation in
order to preserve the individuals on the current Pareto frontier into the next generation.

The widely used single-objective approximation for set cover problem is greedy algorithm. The
only way to deal with the chosen three objectives is to take the weighted sum of each coverage
metric per time, i.e.:

Fig. 13. A plot of 3-dimensional Pareto-front from multi-objective test suite minimisation for program
space from European Space Agency, taken from Yoo and Harman [106].

Results Figure 13 shows the results for the three objective test suite minimisation for a test suite
of a program called space, which is taken from Software Infrastructure Repository (SIR). The 3D



plots display the solutions produced by the weighted-sum additional greedy algorithm (depicted by
+ symbols connected with a line), and the reference Pareto front (depicted by × symbols). The
reference Pareto front contains all non-dominated solutions from the combined results of weighted-
sum greedy approach and NSGA-II approach. While the weighted-sum greedy approach produces
solutions that are not dominated, it can be seen that NSGA-II produces a much richer set of
solutions that explore wider area of the trade-off surface.

8.2 Case Study: Requirements Analysis

Selecting a set of software requirements for the release of the next version of a software system
is a demanding decision procedure. The problem of choosing the optimal set of requirements to
include in the next release of a software system has become known as the Next Release Problem
(NRP) [13, 113] and the activity of planning for requirement inclusion and exclusion has become
known as release planning [82,84].

The NRP deals with the selecting a subset of requirements based on their desirability (e.g. the
expected revenue) while subject to constraints such as a limited budget [13]. The original formulation
of NRP by Bagnall et al. [13] considered maximising the customer satisfaction (by inclusion of their
demanded requirements in the next version) while not exceeding the company’s budget.

More formally, let C = {c1, . . . , cm} be the set of m customers whose requirements are to be
considered for the next release. The set of n possible software requirements is denoted by R =
{r1, . . . , rn}. It is assumed that all requirements are independent, i.e. no requirement depends on
others5. Finally, let cost = [cost1, . . . , costn] be the cost vector for the requirements in R: costi is
the associate cost to fulfil the requirement ri.

We also assume that each customer has a degree of importance for the company. The set of
relative weights associated with each customer cj(1 ≤ j ≤ m) is denoted by W = {w1, . . . , wm},
where wj ∈ [0, 1] and

∑m
j=1 wj = 1. Finally, it is assumed that all requirements are not equally

important for a given customer. The level of satisfaction for a given customer depends on the
requirements that are satisfied in the next release of the software. Each customer cj(1 ≤ j ≤ m)
assigns a value to requirement ri(1 ≤ i ≤ n) denoted by value(ri, cj) where value(ri, cj) > 0 if
customer cj gets the requirement ri and 0 otherwise.

Based on above, the overall score, or importance of a given requirement ri(1 ≤ i ≤ n), can be
calculated as scorei =

∑m
j=1 wj · value(ri, cj). The score of a given requirement is represented as

its overall value to the organisation.

The aim of the Multi-Objective NRP (MONRP) is to investigate the trade-off between the score
and cost of requirements. Let score = [score1, . . . , scoren] be the score vector calculated as above.
Let x = [x1, . . . , xn] ∈ {0, 1}n a solution vector, i.e. a binary string identifying a subset of R. Then
MONRP is defined as follows:

Definition 3 Given: The cost vector, cost = [cost1, . . . , costn] and the score vector (calculated
from the customer weights and customer-assigned value of requirements) score = [score1, . . . , scoren].

Problem: Maximise
∑n

i=1 scorei · xi while minimising
∑n

i=1 costi · xi.

5 Bagnall et al. [13] describe a method to remove dependences in this context by computing the transitive
closure of the dependency graph and regarding each requirement and all its prerequisites as a new single
requirement.



Representation Similar to the test suite minimisation problem in Section 8.1, the candidate
solution for NRP should denote whether each requirement will be selected, i.e. implemented in the
next release. For a set of n requirements, {r1, . . . , rn}, a candidate solution can be represented with
a binary string of length n: the i-th digit is 1 if ri is to be included in the subset and 0 otherwise.

Fitness Function The cost and profit function can be directly used as fitness functions for each
objectives for MOEAs: cost should be minimised while profit should be maximised.

Algorithm The case study compares three different evolutionary algorithms to random search:
NSGA-II, Pareto-GA and a single-objective GA. Pareto-GA is a variation of a generic single-
objective GA that uses Pareto-optimality only for the selection process. The single-objective GA
is used to deal with the multi-objective formulation of NRP by adopting different sets of weights
with the weighted-sum approach. When using weighted-sum approach for two objective functions,
f1 and f2, the overall fitness F of a candidate solution x is calculated as follows:

F (x) = w · f1(x) + (1− w) · f2(x)

Depending on the value of the weight, w, the optimisation will target different regions on the
Pareto front. The case study considered 9 different weight values ranging from 0.1 to 0.9 with step
size of 0.1 to achieve wider Pareto fronts.
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Figure 1: In (a), (b) and (c) metaheuristic search techniques have outperformed Random Search. The NSGA-
II performed better or equal to others for a large part of the Pareto front while Single-Objective performed
better in the extreme regions. The gap between search techniques and Random Search became larger as the
problem size increased. (d) shows the boundary case concerning the number of requirements beyond which,
Random Search fails to produce comparable results with metaheuristic search techniques. (e) shows 25%
increase in the number of requirements, the gap became significant. The NSGA-II performed the best, and
Pareto GA shared part of the front with NSGA-II. (f) shows that the gap was obviously large. The NSGA-II
has outperformed Pareto GA but not the Single-Objective GA in the extreme ends of the front.

Fig. 14. Plot of results for NRP from different algorithms taken from Zhang and Harman [113].



Results Figure 14 shows results for an artificial instance of NRP with 40 requirements and 15
customers. Random search produces normally distributed solutions, whereas the weighted-sum,
single-objective GA tends to produce solutions at the extremes of the Pareto front. Pareto-GA does
produce some solutions that dominate most of the randomly generated solutions, but it is clear that
the Pareto front is dominantly produced by NSGA-II. Solutions generated by NSGA-II form the
widest Pareto front that represents the trade-off between the cost and the expected profit (score).

8.3 Case Study: Structural Test Data Generation

Since the costs of manual software testing are extremely high, the software engineering community
has devoted a lot of attention to researching methods of automating the process. The problem of
generating structural test data, i.e. test data that attempts to execute all of a program’s paths,
program statements or true and false decisions, is one area that has attracted a lot of interest,
particularly with respect to branch coverage; motivated by the prevalence of its variants in software
testing standards.

To motivate the use of Search Based Software Engineering in this context, the program of Figure
15 will be studied, with the aim of generating a test suite that covers each of its individual branches.
It is a program for evaluating a Chemical Abstracts Service (CAS) registry number assigned to
chemicals. Each number is a string of digits separated by hyphens, with the final digit serving as a
check digit. The routine takes a pointer to the first character of the string, processes it, and returns
zero if the number is valid. An error code is returned in the case the number is not valid.

Definition Let I = (i1, i2, ...ilen) be a vector of the input variables of a program under test, p. The
domain Din of the input variable in is the set of all values that in can hold, 1 ≤ n ≤ len; len = |I|.
The input domain of p is a cross product of the domains of each of the individual input variables:
D = Di1×Di2 ...×Dilen . An input i to the function under test is a specific element of the function’s
input domain, that is, i ∈ D.

Given a target structure t in p, the problem is to find an input vector I ∈ D such that t is
executed.

Representation Defining a representation for structural test data generation simply involves a
method of encoding the input vector to a program. This is straightforward for program units such
as functions involving primitive types such as integers, reals or characters, as the input vector can
be manipulated directly by the search algorithm or trivially encoded into a binary format. However,
programs involving arrays or dynamic data structures require more careful handling. In order to
avoid a multi-length encoding, the size and shape of the data structure may need to be fixed.
However research has been undertaken to remove this restriction [60]. For the CAS check routine,
the representation is a sequence of integer values in the range 0-255, fixed to a length of 15. In this
case, the whole range of the char type is used. For primitive types with large domains, however,
the tester may wish to restrict the domains to sensible limits or a legal range of values.

Fitness Function In this case study, each branch is taken as the focus of a separate test data
search, using the fitness function defined by Wegener et al. [97]. Fitness is computed according to
the function fit(t, i)→ R, that takes a structural target t and individual input i, and returns a real
number that scores how ‘close’ the input was to executing the required branch. This assessment



(1) int cas_check(char* cas) {

(2) int count = 0, checksum = 0, checkdigit = 0, pos;

(3)
(4) for (pos=strlen(cas)-1; pos >= 0; pos--) {

(5) int digit = cas[pos] - ’0’;

(6)
(7) if (digit >= 0 && digit <= 9) {

(8) if (count == 0)

(9) checkdigit = digit;

(10) if (count > 0)

(11) checksum += count * digit;

(12)
(13) count ++;

(14) }

(15) }

(16)
(17) if (count >= 4)

(18) if (count <= 10)

(19) if (checksum % 10 == checkdigit)

(20) return 0;

(21) else return 1;

(22) else return 2;

(23) else return 3;

(24) }

Fig. 15. C routine for validating CAS registry numbers of chemical substances (e.g. ‘7732-18-5’, the CAS
number of water), taken from McMinn [66]



is based on a) the path taken by the input, and b) the values of variables in predicates at critical
points along the path.

The path taken by the input is assessed and used to derive the value of a metric known as the
‘approach level’. The approach level is essentially a count of the target’s control dependencies that
were not executed by the path. For structured programs, the approach level reflects the number
of unpenetrated levels of nesting levels surrounding the target. Suppose, for example, a string is
required for the execution of the true branch from line 19, i.e. where the string corresponds to a
valid registry number. A diagram charting the computation of fitness can be seen in Figure 16.
The approach level will be 2 if no invalid characters are found in the string, but there are too few
digits in the string to form a valid CAS number, and the false branch is taken at line 17. If instead
the string has too many digits, the true branch is taken at node 17, but the target is then missed
because the false branch was taken at node 18, and the approach level is 1. When the checksum
calculation is reached at line 19, the approach level is zero.

When execution of a test case diverges from the target branch, the second component, the branch
distance, expresses how close an input came to satisfying the condition of the predicate at which
control flow for the test case went ‘wrong’; that is, how close the input was to descending to the
next approach level. For example, suppose execution takes the false branch at node 17 in Figure
15, but the true branch needs to be executed. Here, the branch distance is computed using the
formula 4− count+K, where K is a constant added when the undesired, alternate branch is taken.
The closer count is being greater than 4, the ‘closer’ the desired true branch is to being taken. A
different branch distance formula is applied depending on the type of relational predicate. In the
case of y >= x, and the >= relational operator, the formula is x − y + K. For a full list of branch
distance formulae for different relational predicate types, see Tracey et al. [93].

The complete fitness value is computed by normalising the branch distance and adding it to the
approach level:

fit(t, i) = approach level(t, i) + normalise(branch distance(t, i))

Since the maximum branch distance is generally not known, the standard approach to normal-
isation cannot be applied [7]; instead the following formula is used:

normalise(d) = 1− 1.001−d

Algorithm A popular Genetic Algorithm for Search Based Structural Test Data Generation is
that of Wegener et al. [97], which we will refer to as the ‘Wegener GA’ hereinafter. The GA uses a
population size of 300 individuals, divided across 6 subpopulations, initially made up of 50 individ-
uals each. It uses a linear ranking method [100] as part of the selection phase. Linear ranking sorts
the population into fitness order as assigns new ranked fitness values such that the best individual
is awarded a ranked fitness of Z, the median individual a value of 1 and the worst individual a
value of Z − 2. The Wegener GA uses a value of Z = 1.7. Stochastic universal sampling [14] is then
used as a selection method, whereby individuals are selected with a probability proportionate to its
ranked fitness value. The selection method therefore favours fitter individuals, but the use of ranked
fitness values rather than direct values helps prevent super-fit individuals from being selected as
many times as they would have been normally, which may go on to dominate the next generation
and cause the search to converge prematurely.



if (count >= 4)

if (count <= 10)

if (checksum % 10 
== checkdigit)

TARGET

TRUE

approach level = 2
branch distance = 4 - count + K

FALSE

approach level = 1
branch distance = count - 10 + K

        approach level = 0
branch distance =|(checksum % 10) - checkdigit| + K

FALSE TRUE

FALSE TRUE

Fig. 16. Fitness function computation for execution of the true branch from line 19 of the CAS registry
number check program of Figure 15, taken from McMinn [66]

The Wegener GA uses a special type of mutation that is well-suited for test data generation
problems involving real values. The mutation operator is derived from the Breeder GA [71]. Mu-
tation is applied with a probability pm of 1/len, where len is the length of the input vector. The
mutation operator applies a different mutation step size, 10−pop, depending on the subpopulation
pop, 1 ≤ pop ≤ 6. A mutation range r is defined for each input parameter by the product of pop and
the domain size of the parameter. The ‘mutated’ value of an input parameter can thus be computed
as v′ = v±r ·δ. Addition or subtraction is chosen with an equal probability. The value of δ is defined
to be

∑15
y=0 αy · 2−y, where each αy is 1 with a probability of 1/16 else 0. If a mutated value is out-

side the allowed bounds of a variable, its value is set to either the minimum or maximum value for
that variable. Discrete recombination [71] is used as a crossover operator. Discrete recombination is
similar to uniform crossover. However with uniform crossover, genes (input values) are guaranteed
to appear in one of the offspring. With discrete recombination offspring individuals receive ‘genes’
(i.e. input variable values) from either parent with an equal probability. Thus a particular gene
may be copied into both children, one of the children or neither child.

The Wegener GA, uses an elitist reinsertion strategy, with the top 10% of a current generation
retained and used in the next, with the remaining 90% discarded and replaced by the best offspring.

Finally the Wegener GA incorporates competition and migration between each of its subpopu-
lations. A progress value, prog, is computed for each population at the end of a generation. This
value is obtained using the formula 0.9 ·prog+ 0.1 · rank. The average fitness rank for a population
is obtained by linearly ranking its individuals as well as the populations amongst themselves (again
with Z = 1.7). After every 4 generations, the populations are ranked according to their progress
value and a new slice of the overall population is computed for each, with weaker subpopulations
transferring individuals to stronger ones. However, no subpopulation can lose its last 5 individuals,



preventing it from dying out. Finally, a general migration of individuals takes place after every 20th

generation, where subpopulations randomly exchange 10% of their individuals with one another.

Results Results with the CAS check example can be found in Table 1. The search for test data was
repeated 50 times with both the GA outlined in the last section and random search. Random search
simply constructs an input by constructing a string where each of the 15 characters is selected at
random. Both algorithms were given a budget of 100,000 inputs to generate and execute the program
with, in order to find test data for a particular branch. Each branch is denoted as LT|F, where L
is the line number of the branch, while T and F denote which of the true or false branches is being
referred to.

The performance of the GA is compared with random search. In the table, the average number
of test data evaluations (fitness function evaluations for the GA) is reported, unless the branch was
not covered over the 50 runs with a 100% success rate, in which case the success rate is reported
instead. As can be seen from the table, random search is very effective, covering all the branches of
the example except 1 (branch 18F). The GA, on the other hand, achieves 100% coverage. Statistical
tests were also performed, as outlined in Section 6.2. For the majority of branches, there was no
statistical difference in performance between the two searches. However, for 18F and 19T, the GA
was significantly better. Random search never covered 18F, and requires 5 times as much effort
(test data evaluations) in order to cover 19T.

Table 1. Results with the CAS registry number checking program of Figure 15. The average number of
test data evaluations over 50 runs is reported for the branch and algorithm if the success rate of finding test
data to execute the branch was 100%, else the success rate is reported instead. A figure appears in bold for
the GA if its performance was significantly better than random search

.

Branch Search
Random Genetic Algorithm

4T 1 1
4F 1 1
7T 2 2
7F 1 1
8T 2 2
8F 8 8
10T 8 8
10F 2 2
17T 465 329
17F 1 1
18T 465 329
18F 0% 3,230
19T 4,270 802
19F 519 363



8.4 Case study: Cost Estimation for Project Planning

Software effort estimation is an important activity performed in the planning phase of a software
project. Its importance can be easily realised by the fact that the effort estimation will drive the
planning of basically all remaining activities in the software development. Given such significance,
many approaches have been proposed in the attempt to find effective techniques for software esti-
mation. Nevertheless, as a result of the high complexity of this activity, the search for efficient and
effective estimation models is still underway. An interesting example on the application of a search
based approach - genetic programming, in this case - to tackle the software estimation problem can
be found in [25].

In this application, the software estimation problem is modeled as a search problem, considering
as search space the set of cost predictive functions which will have their predictive capability
evaluated based on some particular measure. A search algorithm would then seek functions which
maximise this evaluation measure.

Therefore, the Software Cost Estimation problem can be defined, as in [25], as follows:

Definition 4 Software Cost Estimation Problem

Given: Well-formed equations, which can be used to produce cost predictions.

Problem: Find the equation with best predictive capability, calculated by measures such as mean
squared error or correlation coefficient.

Representation For this problem, solutions are represented as trees, expressing well-formed equa-
tions. In each tree, terminal nodes represent constants or variables, and each non-terminal node
stores a simple function, from a pre-determined set of available functions that can be used in the
composition of an equation. The available functions proposed in the original paper were: plus,
minus, multiplication, division, square, square root, natural logarithm and exponential.

Fitness Function As pointed out by Dolado [25], classical measures used to evaluate the fitting
of equations to some data can be use as fitness functions for this software estimation problem. In
the paper, the following measures were considered: mean squared error, which quantifies the error
of the considered function being used as estimator, and the correlation coefficient, which measures
the variation between the predicted and the actual values.

Algorithm Genetic programming (GP), as a variation of the well-known genetic algorithm (GA),
can be used to manipulate complex individuals, expressed by data structures representing trees,
source codes, design projects, or any other structure. Similarly to GA, GP performs genetic opera-
tions such as selection, crossover and mutation to evolve its populations to seek for more adapted
solutions. Dolado [25] employs genetic programming to find a function for software cost estimation.

In that application, as previously described, the candidate functions are described by trees,
representing well-formed equations. Given that representation, the usual evolutionary process is
performed. Initially, an initial population P , with N individuals (equations) is generated. While a
terminate condition in not met, new populations are produced iteratively. First, the members of the



current population are evaluated using the fitness function. Next, individuals are selected as input
to the genetic operators, including crossover and mutation, which create new individuals that will
form the new population.

Results The proposed search based approach was evaluated over twelve datasets and compared to
standard regression analysis. To evaluate the candidate functions, the mean magnitude of relative
error (MMRE) and the prediction at level l (PRED(l)) were used. As reported, the proposed Genetic
Programming strategy performed better, considering the PRED(0.25) measure, in eleven out of the
twelve cases, but with a slight worse value of the MMRE in some cases.

Even though, from the predictive point of view, both methods did not show considerably satisfac-
tory results, authors pointed out that since GP allows the exploration of a large space of candidate
cost functions, this method can provide confidence in the limits of prediction. Additionally, results
showed that linear models, regardless of the approach employed, obtained the best predictions in
general.

Other authors have also reported interesting applications of search based approaches in software
estimation [18,26,58].

9 A Taxonomy of Optimisation Problems and their Mapping to
Software Engineering

The Search Based Software Engineering (SBSE) research field has grown rapidly. From its formal
definition to this date, a huge number of software engineering problems have been mathematically
formulated as optimisation problems and tackled with a considerable variety of search techniques.
This growth has taken place in several directions, but more concentrated in a few particular areas.
As this natural development occurs, and the number of SBSE problems increases, also grows the
necessity of strategies that would help structuring the field. This section introduces a taxonomy, of
Search Based Software Engineering problems and instantiates it with the four examples described
in the case studies of this the paper.

Our goal in introducing the taxonomy is four fold:

i. to allow researchers to understand the relationship among problems and hypothesise about
these relationships.

ii. to highlight to future research directions by identifying unexplored opportunities.

iii. to allow the development of automated search tools to enable effective and efficient search of
SBSE problems in any particular repository.

iv. to facilitate re-use, especially regarding approximation algorithms and theoretical bounds.

The proposed taxonomy of Search Based Software Engineering problems will involve Perspec-
tives, Dimensions and Characteristics.

The two Perspectives, SOFTWARE ENGINEERING and OPTIMISATION, will reflect the dif-
ferent points of view under which a particular SBSE problem can be analysed. The Dimensions, as
in other taxonomies, will represent, for each Perspective, the SBSE problem features. Finally, for
each Dimension, the Characteristics will correspond to the possible feature values under which a
particular SBSE problem can be identified. For all Dimensions, the Characteristics are collectively



exhaustive. However, only the Dimensions “Objective Space Dimensionality”, “Instance Space Char-
acterisation”, “Constrained” and “Problem Linearity” are mutually exclusive, for all others, more
than one Characteristic may be selected for a particular SBSE problem.

In Tables 2 and 3, the proposed taxonomy of Search Based Software Engineering problems is
presented.

For the SOFTWARE ENGINEERING Perspective (Table 2), four Dimensions are identified:
“Software Development Stage(s)”, “Software Development Model(s)”, “Main Subject Descriptor(s)”
and “Main Implicit Subject Descriptor(s)”.

1. The “Software Development Stage(s)” positions the problem under one, or more, stages
in the software engineering process. The Characteristics available for this Dimension are repre-
sentative of the standard software development process.

2. Next, the “Software Development Model(s)” identifies a particular set of development
models in which the problem occurs.

3. The Dimension named “Main Subject Descriptor(s)” describes the software engineering
subject addressed by the problem. The Characteristics present in this Dimension were obtained
from the 1998 version of the ACM Computing Classification System [1]. More specifically, the
possible values for this feature are those defined as a “Subject Descriptor” under the level D.2
(SOFTWARE ENGINEERING), in the third level of the classification structure, with values,
and corresponding subjects, ranging from D.2.0 (General) to D.2.13 (Reusable Software) and
D.2.m (Miscellaneous).

4. Finally, the “Main Implicit Subject Descriptor(s)” Dimension details the previous subject
descriptor(s), by allowing the selection of the more specific subject descriptors present in the
fourth level of the ACM Computing Classification System [1], once again under the level D.2
(SOFTWARE ENGINEERING).

For the OPTIMISATION Perspective, other six Dimensions are defined.

1. The “Objective Space Dimensionality” is descriptive of the number of objective functions
present in the formulation.

2. “The Instance Space Characterisation” Dimension evaluates the problem variables as
continuous or discrete.

3. Next, “Constrained” accounts for the presence of restrictions.
4. “Problem Linearity” indicates, for both objective and restriction functions, their linearity.
5. The following Dimension, “Base NPO Problem Type(s)”, attempts to extract the problem

category, using the classification proposed by Garey and Johnson [34] and employed in the
Compendium of NP Optimisation Problems [22]. The general types present in the Compendium
are: Graph Theory, Network Design, Sets and Partitions, Storage and Retrieval, Sequencing and
Scheduling, Mathematical Programming, Algebra and Number Theory, Games and Puzzles,
Logic, Automata and Language Theory, Program Optimisation and Miscellaneous.

6. Finally, “Base NPO Problem” tries to relate the considered SBSE problem with a generally
defined NP optimisation problem, in a way one could employ the known results, including ap-
proximation algorithms and theoretical bounds, previously available in the literature regarding
that general problem. For that purpose, once again, the “Compendium of NP Optimisation
Problems” will be used.

At this point, it is worth mentioning that the “Compendium of NP Optimisation Problems”
presents a considerable variety of optimisation problems in the most different categories, however, it



Table 2. Taxonomy of Search Based Software Engineering Problems - SOFTWARE ENGINEERING
Perspective.

A. SOFTWARE ENGINEERING Perspective

1. Software Development Stage(s)
(a) Software Planning

(b) Requirement Engineering

(c) Software Design

(d) Implementation/Coding

(e) Integration

(f) Testing/Validation

(g) Deployment

(h) Maintenance

2. Software Development Model(s)
(a) Waterfall Model

(b) Spiral Model

(c) Iterative and Incremental Development

(d) Agile Development

3. Main Subject Descriptor(s)
(a) Subject Descriptors under SOFTWARE ENGINEERING (D.2), in the

1998 ACM Computing Classification System.

4. Main Implicit Subject Descriptor(s)
(a) Implicit Subject Descriptors under SOFTWARE ENGINEERING

(D.2), in the 1998 ACM Computing Classification System.

lacks a formal definition of a basic optimisation problem, under which several known problems could
be classified. To tackle this absence, the definition of a BASIC OPTIMISATION PROBLEM,
which would fall under the MISCELLANEOUS type, defined with the same basic ingredients
employed in the Compendium, is presented below.

BASIC OPTIMISATION PROBLEM

Instance: Finite or infinite set U , for each u ∈ U a fitness value f(u) ∈ Z+.
Solution: An element, u′ ∈ U .
Measure: Fitness value of u, i.e., f(u).

9.1 Classification Examples

In order to illustrate the representation of Search Based Software Engineering problems under the
proposed taxonomy, it is presented, next, the classification of SBSE problems discussed in section



Table 3. Taxonomy of Search Based Software Engineering Problems - OPTIMISATION Perspective.

A. OPTIMISATION Perspective

1. Objective Space Dimensionality
(a) Mono-objective

(b) Multi-objective

2. Instance Space Characterisation
(a) Discrete

(b) Continuous

3. Constrained
(a) Yes

(b) No

4. Problem Linearity
(a) Linear

(b) Nonlinear

5. Base NPO Problem Type(s)
(a) Problem Categories as defined in the Compendium of NP Optimisation

Problems

6. Base NPO Problem(s)
(a) Problems as defined in the Compendium of NP Optimisation Problems

8: The Regression Test Case Selection problem (Table 4), the Next Release problem (Table 5),
the Structural Test Case Generation problem (Table 6) and the Software Cost Estimation problem
(Table 7).

The Multi-Objective Regression Test Case Selection problem [106] extends previously published
mono-objective formulations. The paper discusses two variations, one which considers two objec-
tives (code coverage and execution time), used here, and the other covering three objectives (code
coverage, execution time and fault detection). Consider, for this problem, the special case where a
set of test cases which covers 100% of the code is sought. In addition, consider that all test cases
have the same execution time. In that case, the Test Case Selection Problem problem can be seen
as a application of the MINIMUM SET COVER problem.

MINIMUM SET COVER

Instance: Collection C of subsets of a finite set S.
Solution: A set cover for S, i.e., a subset C ′ ⊆ C such that every element in S belongs to at least

one member of C ′.
Measure: Cardinality of the set cover, i.e., |C ′|.

S will represent the set of all statements in the source code. Collection C will contain the test
cases that can be selected. Each test case covers a number of statements in the source code, which



Table 4. Typification of the Regression Test Case Selection under the Proposed Taxonomy.

A. SOFTWARE ENGINEERING Perspective
1. Software Development Stage(s)

Testing/Validation

2. Software Development Model(s)
Waterfall Model

Spiral Model

Iterative and Incremental Development

Agile Development

3. Main Subject Descriptor(s)
D.2.5 Testing and Debugging

4. Main Implicit Subject Descriptor(s)
Testing Tools

B. OPTIMISATION Perspective
1. Objective Space Dimensionality

Multi-objective

2. Instance Space Characterisation
Discrete

3. Constrained
No

4. Problem Linearity
Linear

5. Base NPO Problem Type(s)
SETS AND PARTITIONS

6. Base NPO Problem(s)
MINIMUM SET COVER

means that each test case can be representative of a subset of S. Thus, the solutions are set covers
for S, that is, a subset of test cases, C ′ ⊆ C, such that all statements in S are covered, meaning
that each statement is covered by, at least, one of the members of C ′. The solution sought is the
one with the lowest cardinality, which will have lowest execution time, since all test cases have the
same execution time.

For the other dimensions in the OPTIMISATION perspective (Table 4), the Multi-Objective
Test Case Selection Problem can be classified as Multi-objective, having a Discrete instance space,
Unconstrained and Linear. Over the SOFTWARE ENGINEERING perspective, the problem falls
under the Testing/Validation development stage and is not particular to any specific development
model. Furthermore, it has as main subject descriptor the choice “D.2.5 Testing and Debugging”,
and “Testing Tools” as implicit subject descriptor.



Table 5. Typification of the Next Release Problem under the Proposed Taxonomy.

A. SOFTWARE ENGINEERING Perspective
1. Software Development Stage(s)

Requirement Engineering

2. Software Development Model(s)
Iterative and Incremental Development

Agile Development

3. Main Subject Descriptor(s)
D.2.1 Requirements/Specification

4. Main Implicit Subject Descriptor(s)

B. OPTIMISATION Perspective
1. Objective Space Dimensionality

Mono-objective

2. Instance Space Characterisation
Discrete

3. Constrained
Yes

4. Problem Linearity
Linear

5. Base NPO Problem Type(s)
MATHEMATICAL PROGRAMMING

6. Base NPO Problem(s)
MAXIMUM KNAPSACK

The Next Release Problem (NRP), in its original formulation as a constrained mono-objective
optimisation problem [13], involves determining a set of customers which will have their selected
requirements delivered in the next software release. This selection prioritises customers with higher
importance to the company (maximise

∑n
i=1 wi), and must respect a pre-determined budget (sub-

ject to
∑n

i=1 ci ≤ B).

In typifying this problem under the proposed taxonomy, it is easy to see that, regarding the
SOFTWARE ENGINEERING perspective (Table 5), the NRP is positioned under the Requirement
Engineering software development stage, occurring specially in the Iterative and Incremental and
Agile Development Models. In addition, the Next Release Problem addresses the subject “D.2.1
Requirements/Specifications”, present in the ACM Computing Classification System. Under the
OPTIMISATION perspective, as stated above, it is a mono-objective problem, since it aims to
solely maximise the importance of the customers which will have their requirements delivered. It
has a discrete instance space and should be classified as a constrained problem, since considers a pre-
defined budged as restriction. Since both objective and restriction functions are linear, the overall
problem can be considered linear as well. Finally, it involves the solution of a MATHEMATICAL



PROGRAMMING problem, as defined in the “Compendium of NP Optimisation Problems”. In
fact, the Next Release Problem can be seen as a specialisation of the MAXIMUM KNAPSACK
Problem, as discussed next.

Consider the mathematical definition of the MAXIMUM KNAPSACK problem, as pre-
sented in [22]:
MAXIMUM KNAPSACK

Instance: Finite set U , for each u ∈ U a size s(u) ∈ Z+ and a value v(u) ∈ Z+, a positive integer
B ∈ Z+.

Solution: A subset U ′ ⊆ U such that
∑

u∈U ′ s(u) ≤ B.
Measure: Total weight of the chosen elements, i.e.,

∑
u∈U ′ v(u).

As defined in Instance, the set U can represent the customers which may have their require-
ments delivered in the next software release. Each customer, u ∈ U , has an importance, represented
here by v(u), which expresses the function wi in the NRP definition. The goal is to maximise the
sum of the importance of the selected customers. However, only solutions respecting the problem
restriction can be considered. In the definition of the MAXIMUM KNAPSACK problem, each el-
ement u ∈ U has a size, s(u) ∈ Z+, which will limit the amount of elements that can be selected.
In the Next Release problem, the function s(u) will represent the overall cost of implementing all
requirements desired by customer u, that is, s(u) = ci.

For the Structural Test Data Generation problem, the classification under the proposed taxon-
omy, as shown in Table 6, considering the SOFTWARE ENGINEERING perspective, would place
this problem under the Testing/Validation development stage. Regarding development models, this
test data generation issue arises in all models covered by the taxonomy. “D.2.5 Testing and Debug-
ging” would be the main subject descriptor of such problem and “Testing Tools” would work as
implicit descriptor.

Considering now the OPTIMISATION perspective, this problem could be characterised as mono-
objective, since it composes two measures (approach level and branch distance) in a single evaluation
function. Additionally, it works with a usually continuous instance space formed of input vectors. It
is also an unconstrained and linear problem. Finally, the Structural Test Data Generation problem
can be seen as a simple instantiation of the BASIC OPTIMISATION PROBLEM described earlier,
where, given a target structure t in p, the problem involves simply searching for an input vector
i ∈ D, representing elements in the instance space U , with minimum value given by evaluation
function fit(t, i), representing f(u) in the description of the BASIC OPTIMISATION PROBLEM.

Finally, the Software Cost Estimation problem is associated with the Software Planning devel-
opment phase and all development models (Table 7). The most adequate mains and implicit subject
descriptors would be “D.2.9 Management” and “Cost Estimation”, respectively.

Similarly to the Test Data Generation problem, this problem is an instantiation of the BASIC
OPTIMISATION PROBLEM. In this case, the problem seeks solutions represented by well-formed
functions, forming the instance set U , looking for a solution with minimum value given by function
f(u), associated with measures such as minimum squared error or correlation coefficient. Addition-
ally, the problem should be classified as mono-objective, continuous, unconstrained and nonlinear.

10 Next steps: Getting started

This section is primarily aimed at those who have not used SBSE before, but who have a soft-
ware engineering application in mind for which they wish to apply SBSE. Throughout this section



Table 6. Typification of the Structural Test Data Generation Problem under the Proposed Taxonomy.

A. SOFTWARE ENGINEERING Perspective
1. Software Development Stage(s)

Testing/Validation

2. Software Development Model(s)
Waterfall Model

Spiral Model

Iterative and Incremental Development

Agile Development

3. Main Subject Descriptor(s)
D.2.5 Testing and Debugging

4. Main Implicit Subject Descriptor(s)
Testing Tools

B. OPTIMISATION Perspective
1. Objective Space Dimensionality

Mono-objective

2. Instance Space Characterisation
Continuous

3. Constrained
No

4. Problem Linearity
Linear

5. Base NPO Problem Type(s)
MISCELLANEOUS

6. Base NPO Problem(s)
BASIC OPTIMISATION PROBLEM

the emphasis is unashamedly on obtaining the first set of results as quickly as possible; SBSE is
attractive partly because it has a shallow learning curve that enables beginner to quickly become
productive. There is an excitement that comes with the way in which one can quickly assemble a
system that suggests potentially well optimised solutions to a problem that the experimenter had
not previously considered.

By minimising the time from initial conception to first results, we seek to maximise this excite-
ment. Of course subsequent additional work and analysis will be required to convert these initial
findings into a sufficiently thorough empirical study for publication. The goal of the section is to
take the reader from having no previous work on SBSE to the point of being ready to submit their
first paper on SBSE in seven simple steps. The first four of these steps are sufficient to gain the first



Table 7. Typification of the Software Cost Estimation Problem under the Proposed Taxonomy.

A. SOFTWARE ENGINEERING Perspective
1. Software Development Stage(s)

Software Planning

2. Software Development Model(s)
Waterfall Model

Spiral Model

Iterative and Incremental Development

Agile Development

3. Main Subject Descriptor(s)
D.2.9 Management

4. Main Implicit Subject Descriptor(s)
Cost Estimation

B. OPTIMISATION Perspective
1. Objective Space Dimensionality

Mono-objective

2. Instance Space Characterisation
Continuous

3. Constrained
No

4. Problem Linearity
Nonlinear

5. Base NPO Problem Type(s)
MISCELLANEOUS

6. Base NPO Problem(s)
BASIC OPTIMISATION PROBLEM

results (and hopefully also the excitement that comes with the surprises and insights that many
authors have experienced through using SBSE for the first time).

Step 1: The first step is to choose a representation of the problem and a fitness function (see Section
3). The representation is important because it must be one that can be readily understood; after
all, you may find that you are examining a great many candidate solutions that your algorithms
will produce.

One should, of course, seek a representation that is suitable for optimisation. A great deal has
been written on this topic. For the first exploration of a new SBSE application the primary concern
is to ensure that a small change to your representation represents a small change to the real world
problem that your representation denotes. This means that a small change in the representation
(which will be reflected by a move in a hill climb or a mutation in a genetic algorithm) will cause



the search to move from one solution to a ‘near neighbour’ solution in the solution space. There are
many other considerations when it comes to representation, but for a first approach, this should be
sufficient to contend with.

Perhaps for the first experiments, the most important thing is to get some results. These can
always be treated as a baseline, against which you measure the progress of subsequent improvements,
so ‘getting it a bit wrong’ with the initial choices need not be a wasted effort; it may provide a way
to assess the improvements brought to the problem by subsequent development.

Step 2: Once there is a way to represent candidate solutions, the next step is to chose a fitness
function. There may be many candidate fitness functions. Choose the simplest to understand and
the easiest to implement to start off with. Once again, this may provide a baseline against which to
judge subsequent choices. Ideally, the fitness function should also be one that your implementation
will be able to compute inexpensively, since there will be a need for many fitness evaluations,
regardless of the search technique adopted.

Step 3: In order to ensure that all is working, implement a simple random search. That is, use a
random number generator to construct an entirely arbitrary set of candidate solutions by sampling
over the representation at random. This allows you to check that the fitness function is working
correctly and that it can be computed efficiently. One can also examine the spread of results and
see whether any of the randomly found solutions is any good at solving the problem. Despite its
simplicity, random search is simple and fast and many researchers have found that it is capable of
finding useful solutions for some Software Engineering applications (for instance, in testing, where
it has been very widely studied [55,79]).

Step 4: Having conducted steps 1-3 we are in a position to conduct the first application of a
search based technique. It is best to start with hill climbing. This algorithm is exceptionally easy to
implement (as can be seen from Section 4). It has the advantage that is is fast and conceptually easy
to understand. It can also be used to understand the structure of the search space. For instance,
one can collect a set of results from multiple restart hill climbing and examine the peaks reached. If
all peaks found are identical then hill climbing may have located a large ‘basin of attraction’ in the
search space. If all peaks are of very different heights (that is, they have different fitness values) then
the search space is likely to be multimodal. If many hill climbs make no progress then the search
space contains many plateaux (which will be a problem for almost any search based optimisation
technique).

It is possible that simply using hill climbing, the results will be acceptable. If this is the first time
that SBSE has been applied to the Software Engineering problem in hand, then the results may
already be at the level at which publication would be possible. If the peaks are all acceptable but
different then the approach already solves the problem well and can give many diverse solutions.

This was found to be the case in several software engineering applications. For instance, in
software modularisation [68], the hill climbing approach produced exceptionally good results for
determining the module boundaries of source code that remained unsurpassed by more sophisticated
algorithms from 1998 [64] until 2011 [77]. Furthermore, the multi objective genetic algorithm that
found better solutions only managed to do so at a cost of two orders of magnitude more fitness
evaluations [77].

Korel [59] was one of the first authors to apply a search based optimisation approach to a
software engineering problem. He used a hill climbing approach for software test input generation.
Though this problem has been very widely studied, this hill climbing approach still proved to be an
attractive approach 17 years later, when it was studied and (favourably) compared empirically and
theoretically to a more sophisticated genetic algorithm [49], suggesting that a hybrid that combined



both hill climbing (local search) and genetic algorithms (global search) was the best approach for
test data generation [50].

Hill climbing can also be used to help to understand the nature of the solutions found. For
example, through multiple hill climbs, we can find the set of common building blocks that are
found in all good solutions. This can help to understand the problem and also may be a way to
make subsequent techniques more effective. This approach to locating building blocks using multiple
runs of a hill climber was applied by Mahdavi et al. [62], who used a distributed cluster of machines
to perform multiple hill climbs in parallel for the software modularisation problem. The results were
the building blocks of ‘good modules’ (those which were cohesive and exhibited low coupling) for
a particular architecture of dependencies. Mahdavi et al. also showed that the initial identification
of building blocks could improve the performance of the subsequent search.

For all these reasons, faced with a large number of possible algorithms with which to start, it
seems sensible to adopt hill climbing as the first optimisation algorithm. If the results are promising
then within a very short space of time, the novice SBSE researcher will have migrated from finishing
reading this tutorial to starting to write their own first SBSE paper; perhaps in as little as a matter
of days.

Step 5: The natural next step is to try some different search based algorithms. A good place to
start is those described in Section 4 since these have been commonly applied and so there will be
a wealth of previous results with which to compare. Following this, the SBSE researcher is already
going beyond what can be covered in a single tutorial such as this and is thus referred to the
literature on search based optimisation. A good overview of search techniques can be found in the
text book by Burke and Kendall [19].

Step 6: Having implemented several SBSE algorithms and obtained results, the next step is to
analyse these results. In this paper we have set out some of the common statistical techniques used
to analyse SBSE work in Section 6. Naturally, this can only provide an overview of some commonly
used approaches, but it should be sufficient to address some of the most obvious initial questions;
those to which a referee would naturally expect answers. Using these techniques the results can be
developed to become the basis for an experimental or empirical study, by selecting some non trivial
real world examples to which the new SBSE approach can be applied. The most natural questions
to address are those of efficiency and effectiveness. That is, the study should, at least, answer the
questions: how good are the solutions you find and how much computational (and/or human) effort
is required to obtain them?

Step 7: One of the attractive aspects of SBSE is the way it re-unites different areas of software
engineering, as explained in Section 2. A good paper on SBSE will contain a thorough account
of the related work and this may help to achieve this re-unification goal, drawing together appar-
ently unrelated areas of software engineering. In so doing, SBSE work can play a vital role in the
development of the wider field of Software Engineering itself, providing a more solid search-based
understanding of the underlying optimisation problems that are found in each application area.

Using SBSE, we seek to apply search algorithms to software engineering problems so there are
two natural sources of related work for any paper on SBSE; the previous work that tries to solve the
same (or similar) Software Engineering problem(s) and the previous work that uses a similar search
based approach. You may find that two apparently quite different software engineering problems
have been attacked using the same (or similar) search based formulation (perhaps representation is
shared or a similar fitness can be used).

An SBSE paper can be considerably enhanced by exploring these links, since such connections
mean that the paper can have an impact on at least two software engineering domains, rather than



merely the one for which the results are presented. Hopefully, in developing a related work section,
the taxonomy in Section 9 will be helpful. The many surveys on SBSE are also a source of valuable
summary information concerning potentially related techniques and application areas.
Step 8: At this point, the researcher has sufficient information and results to consider writing a
paper. Naturally, there will be a choice about where to send the paper that can only be made by
the author(s). There is also the question of how to set the problem formulation, research questions
and results into as format that will appeal to (firstly) referees and (ultimately) readers.

There are many excellent papers that give guidance on how to write good software engineering
papers, such as that by Mary Shaw [86]. Those papers that present results on SBSE generally
(though not exclusively) fall in the category of empirical software engineering papers, for which the
systematic review of Ali et al. [4] sets out useful guidelines relevant to SBSE.

11 SBSE Limitations and Techniques for Overcoming Them

In this final section we review some of the problems and issues that can arise when using SBSE and
some simple techniques for overcoming them. Many of these issues are common to all approaches
to optimisation based on algorithms guided by fitness and many of the solution approaches could
be described as the application of ‘common sense’ (though some may be slightly surprising or
counter-intuitive). Where possible, we provide pointers to the SBSE literature, indicating where
the proposed solution approaches have already been explored in the specific context of Software
Engineering problem domains.

11.1 My Ideal Fitness Function is Too Computationally Expensive

The most natural fitness function for a problem may turn out to be computationally expensive and
this may mean that the whole search process takes a long time. In most applications of SBSE, it
is the computation of fitness that occupies the largest part of the overall computational cost of the
SBSE implementation. As such, it makes sense to consider techniques for controlling and reducing
this cost, where it is manageable. This issue, therefore, can be considered to be the problem of ‘how
can we compute fitness faster?’. We consider three approaches: use a cheaper surrogate, parallelise
and imbue the search with domain knowledge.
Find a cheaper surrogate: Often, a computationally demanding fitness function can be reserved
for evaluating the final result or for occasional fitness computation, while a surrogate (or surrogates)
is/are used for most of the fitness evaluations used to guide the search. Even if the surrogate fitness
function is not a perfect guide, it can be computationally cheaper overall, to use a less accurate
fitness function (that still provides some guidance for the majority of fitness computations). This
approach has been used very little in Software Engineering, partly because many of the fitness
functions used in SBSE tend to be computationally inexpensive (they often come from works on
metrics [42], which are pre-designed to be computationally practical). Even when the metrics used
as fitness functions do prove to be computationally expensive, it is typically hard to find surrogates.
However, as SBSE increasingly finds applications in new software engineering areas there may also
be a wider choice of available metrics and it may turn out that the most suitable metrics are also
those that are more computationally expensive. We can therefore expect that there will be a greater
reliance on surrogate fitness computations in future work on SBSE. To minimise the negative impact
of using a surrogate that only captures part of the true fitness or which includes noise, it may be
advantageous to use multiple surrogate fitness computations (as discussed later on in this section).



Parallelise: SBSE algorithms are known as ‘embarrassingly parallel’ [32] because of their potential
for scalability through parallel execution of fitness computations [72]. Recent work has shown how
this parallelism can be exploited on General Purpose Graphical Processing devices (GPGPUs) [110]
with scale ups in overall computation time up to a factor of 20. Because of the inherent parallelism
of SBSE algorithms and the wide availability of cheap multicore devices we can expect a great deal
more scalability research in future work on SBSE. In the era of multicore computing, SBSE is well
placed to make significant strides forward in simple effective and scalable parallel solutions.
Use domain knowledge: Domain Knowledge can be used to guide the search to fruitful areas
of the landscape, without actually determining the precise solution. For example, in selection and
prioritisation problems, we may know that the solution we seek must include certain items (for
selection these can be hard wired onto the solution) or we may know that a certain relative placement
of some individuals in an ordering is highly likely. This can happen often as the result of human
considerations concerned with management and business properties. For instance, in selecting and
prioritising requirements, it is not always possible to take account of all the socio-political issues
that may determine the ideal solution set. The manager may simply say something like ‘whatever
the solution you adopt, we must include these five requirements, because the CEO deems them
essential for our business strategy, going forward’. This can be an advantage for search, because
it simultaneously and effortlessly adapts the solution to the business needs while reducing the size
of the search space. Wherever possible, domain knowledge should be incorporated into the SBSE
approach.

11.2 My Fitness Function is Too Vague and Poorly Understood to Make it
Something I can Compute

It is a popular misconception that SBSE must use a fitness function that is both precise and
accurate. It is true that this is advantageous and valuable (if possible), but neither is essential. In
software measurement, we seek metrics that meet the ‘representation condition’ [87], which states
that the ordering imposed by the metric on the individuals it measures should respect the ‘true
ordering’ of these individuals in the real world.

It is a natural condition to require of a metric, M ; if M(a) > M(b) then we should reasonably
expect that the real world entity a is truly ‘better’ than b in some sense and vice versa. However this
requirement is not essential for SBSE. If a fitness function merely tends to give the right answer,
then it may well be a useful, if inefficient, fitness function candidate. That is, if the probability
is greater than 0.5 that a pairwise fitness comparison on two individuals a and b with metric M
will produce the correct outcome, then may potentially be used in SBSE should it prove to have
compensatory properties; our search will be guided to some extent, though it may make many
wrong moves.

However, if a metric is simply not defined for some part of the candidate solutions space or can
only be defined by subjective assessment for all or part of the solution space, then we need a way to
handle this. There are two natural approaches to this problem: use a human or use multiple fitness
functions.
Involve Human Judgement: Fitness functions do not need to be calculated entirely automati-
cally. If they can be fully automated, then this is advantageous, because one of the overall advan-
tages of SBSE is the way it provides a generic approach to the problem of Automating Software
Engineering [36]. However, it has been argued [37] that some Software Engineering tasks, such as
those associated with comprehension activity are inherently subjective and require a human input



to the fitness computation. This is easily accommodated in SBSE, since may algorithms allow for
‘human-in-the-loop fitness computation. Such subjective, human-guided, fitness has been used in
interactive evolutionary algorithms for SBSE applied to design-oriented problems [89] and Require-
ments Engineering [92].
Use Multiple Fitness Functions: It is not necessary to use only the ‘best’ fitness function to
guide the search. If the best fitness function is still only the best at capturing part of the search space
there is nothing to prevent the use of other fitness functions that capture different, perhaps smaller,
parts of the solution space. Fitness functions can be combined in a number of ways to provide an
‘agglomerated’ fitness function. Both weighting and Pareto optimal approaches have been widely
studied in the SBSE literature [36]. However, using several fitness functions, each of which applies to
different parts of the solutions space has not been explored in the literature. Given the complicated
and heterogenous nature of many Software Engineering problems, this approach is under-explored
and should receive more attention. In future work on SBSE, we may seek to bundle patchworks of
different fitness functions to solve a single problem, deploying different fitness functions at different
times, for different stake holders, or for different parts of the solutions space.

11.3 My Search Space Is Too Difficult for Search to Work Well

The performance of a search based optimisation algorithms depends crucially on the search land-
scape that a fitness function creates when used to guide the search for a specific problem. If a
particular search algorithm performs poorly on a search space then there are two obvious solutions
that immediately present themselves; do something to modify the way fitness is computed or choose
a different algorithm (one that is better suited to the landscape). In order to take either course of
action, it is important to undertake research into the properties of the search landscape in order
to understand which is the best algorithm to apply. There has been much work on analysis and
characterisation of SBSE landscapes and fitness functions, but more is required in order to provide
a more complete understanding of the properties to which SBSE is applied.
Analyse Different Fitness Functions: Different characterisations of fitness can achieve very
different results. This has been demonstrated empirically, in SBSE problems, where the choice of
fitness can have different robustness to noise in the data [51]. The initial choice of fitness function
may lead to a search landscape contains too many plateaux, or other features that make search hard
(needle in a haystack, multimodal features, deceptive basins of attraction etc.). In these situations,
it makes sense to analyse the effect of different fitness functions; each will characterise the problems
differently and may have very different behaviours, even if all agree on the local or global optima.
Use Multiple Fitness Functions: Even if your search problem is inherently single objective in
nature, it may make sense to consider experimenting with multi objective approaches. It has been
shown in previous work on SBSE for module clustering [77] that better results can be obtained for
using a multi objective optimisation on a single objective problem. This happens because the other
objectives may help the search to find routes to the global optima in the single objective space.
Therefore, searching for solutions that satisfy multiple objectives may, perhaps counter-intuitively,
help to solve a single objective problem. If you find that one of your fitness characterisation has
an unattractive search landscape, yet it provides useful guidance in some cases, you might consider
incorporating additional fitness functions.
Use Secondary Fitness: For problems in which there are too many plateaux, you may consider
the use of a secondary fitness function, to be used to distinguish candidate solutions that lie on
a plateaux according to the primary fitness function. This has been used in the SBSE problem of



search based transformation. In transformation, the goal is to find a new version of the program
that is better (according to some metric) by searching the space of transformations of the original
program (or the transformations sequences that can be applied to it). This is a very well studied
area of SBSE [21, 29, 30, 52, 75, 85], dating back to the work of Ryan and Williams [83, 104] on
auto-parallelisation transformations.

One of the problems for this SBSE problem, is that there are many transformations the appli-
cation of which fails to affect the primary fitness function. For example, suppose we seek to shrink
the size of a program by either removing redundant computation or by slicing [44]. In this situa-
tion, there are many transformations that will not reduce the size of the program to which they
are applied. All such transformations will lie on a plateau of fitness with regard to their effect on
code reduction for some specific program. However, we can distinguish among such transformations.
Those that are not applicable are worse than those that are applicable. Those that are applicable,
but have no effect at all are worse than those that alter the code without reducing its size. In the
early stages of the search those transformations that have a larger effect on the syntax may also
be preferred. This suggests a secondary fitness that can be used to guide a search to the edges of
a plateaux in the search space induced by the primary fitness function. This has been employed to
improve the performance of search based slicing [30].
Landscape Analysis: In the more general optimisation literature, the issue of landscape analysis
and algorithmic characterisation is well studied [103]. For example, there has been work on the
analysis of plateaux in search landscapes [91]. There has also been much work on SBSE landscape
analysis and algorithm characterisation. Early work in this area for the project estimate feature
selection [57] and modularisation [67] has been championed in the SBSE literature [36] as exemplary
of the kinds of analyse that can be achieved, empirically, using a simple (but effective) multiple
restart simple hill climbing approach. There has also been recent theoretical analysis of SBSE algo-
rithm performance [61] and theoretical and empirical analyses of search based testing for structural
test data generation [7, 49,50].
Choose the Right Algorithm for the Search Space: Choosing the right algorithm for the
problem is as fundamental to search as choosing the right tool for the job is in any engineering
endeavour. The field of optimisation is well known for its many versions of the ‘no free lunch
theorem’ [102]. There is plenty of evidence [3, 48, 78] to indicate that SBSE problems are as wide
and varied as those found in the general optimisation literature. It is, therefore, foolhardy to believe
that one search based optimisation technique will be superior for all possible problems that one
might encounter.

The most popular algorithms (by far) that have been used hitherto in SBSE work are variations
on the theme of population-based evolutionary algorithm [48]. This is not the result of evidence
that evolutionary algorithms are superior to other algorithms. Quite the contrary in fact: There
is evidence to suggest that, for some problems, such as structure test data generation (a very
widely studied problem), simpler local search algorithms may be better [49], and that some form
of hybridisation that seeks to achieve the best of both local and global search [50] may be the best
performing approach so far known.

11.4 The Final Fitness I Obtained is Simply Too Poor: The Solutions are Just not
Good Enough

Usually, even with a relatively ‘out of the box’ choice of fitness function and search based optimi-
sation technique, the results obtained will be better than those obtained using a purely random



search. However, you may still feel that the results are not as good as you would like, or, if you
have as specific threshold fitness value in mind, you may find that your algorithm fails to achieve
this threshold, even when you allow it considerable computation resources. In this situation, you
should not give up and assume that ‘SBSE does not work’ (it is just possible that it may not, but
it is certainly too soon to be sure!). It may be that your algorithm is performing poorly because
of some of the parameter choices or because it is the wrong algorithm for this particular problem.
Even should all else fail, you may be able to extract useful information from the suboptimal results
you have obtained.

Avoid Premature Convergence: Premature convergence on a local optima often turns out to
underlie the observation that an SBSE algorithm fails to produce ‘good enough’ results. This can
happen because, for example, too much elitism has been incorporated into an evolutionary approach,
or because some domain knowledge has been injected in a way that strongly biases solutions towards
only one part of the search space. In general, it may be helpful to think of your search process as
a compromise between exploration and exploitation (a common distinction in the more general
optimisation literature). If you fail to explore sufficiently, then premature convergence will result.
If you fail to exploit sufficiently, then you may have a broad spread of solutions across the search
space, none of which is of particularly high quality. It is a good overarching principle to seek to
favour exploration in the earlier stages of the search process and exploitation subsequently. This
principle is captured, elegantly, by the cooling parameter of simulated annealing, though there are
ways to incorporating similar ideas into almost all search algorithms.

Try Other Search Algorithms: As noted above, the reasons for poor performance could simply
be that the wrong search algorithm is used for the search space in hand. If the fitness landscape
resembles one enormous hill (or lots of hills of equal fitness) then hill climbing is clearly an attractive
candidate. For landscapes with so-called ‘royal road’ properties [70], an evolutionary algorithm will
be favourable. These distinctions are starting to be explored in the SBSE literature [49]. It is always
advisable to explore with several search based algorithms in any SBSE work, to include (as a sanity
check) random search, together with at least one local and one global search technique, simply to
get a sense for the variabilities involved. Of course, comparing these will require some thought and
careful planning, as explained in Section 6.

Look for Building Blocks: It is unlikely, but suppose you discover that you cannot get the higher
quality results you seek after trying several fitness functions and many different algorithms. What
then? Well, in this situation, you will have a large set of results, albeit a set of sub optimal results.
There is a great deal of value that can be obtained from such a set of results. You can use them
to understand the structure of the search space. This may helpful to explain why your results turn
out the way they do. Furthermore, you can search for building blocks in the solutions, that can
help you to identify partial solutions or fragments of good solutions that can help to identify better
solutions. Such building blocks may lead a human to a ‘eureka’ moment, when they gain insight
into the structure of some essential or sufficient ingredient of a good solution. They can also be
used to constrain subsequent search based approaches, that may then prove more successful. This
two-stage search approach has been shown to be effective in SBSE work; it has been used to identify
the building blocks of good software modularisations for a subsequent search over a constrained
(and therefore much smaller) landscape in which the building blocks are now fixed [62].



12 Conclusion

We hope that this tutorial paper has been a useful guide to the development of the reader’s (perhaps
first) SBSE paper. We look forward to reading and learning from your work on SBSE.

References

1. ACM. The 1998 ACM computing classification system, 2009. http://www.acm.org/about/class/1998.
2. Konstantinos Adamopoulos, Mark Harman, and Robert M. Hierons. How to Overcome the Equivalent

Mutant Problem and Achieve Tailored Selective Mutation using Co-Evolution. In Proceedings of
the 2004 Conference on Genetic and Evolutionary Computation (GECCO ’04), volume 3103/2004 of
Lecture Notes in Computer Science, pages 1338–1349, Seattle, Washington, USA, 26-30 June 2004.
Springer Berlin / Heidelberg.

3. Wasif Afzal, Richard Torkar, and Robert Feldt. A systematic review of search-based testing for non-
functional system properties. Information and Software Technology, 51(6):957–976, 2009.

4. Shaukat Ali, Lionel C. Briand, Hadi Hemmati, and Rajwinder Kaur Panesar-Walawege. A systematic
review of the application and empirical investigation of search-based test-case generation. IEEE
Transactions on Software Engineering, 2010. To appear.

5. Giulio Antoniol, Stefan Gueorguiev, and Mark Harman. Software project planning for robustness and
completion time in the presence of uncertainty using multi objective search based software engineer-
ing. In ACM Genetic and Evolutionary Computation COnference (GECCO 2009), pages 1673–1680,
Montreal, Canada, 8th – 12th July 2009.

6. Giulio Antoniol, Massimiliano Di Penta, and Mark Harman. Search-based techniques applied to
optimization of project planning for a massive maintenance project. In 21st IEEE International
Conference on Software Maintenance, pages 240–249, Los Alamitos, California, USA, 2005. IEEE
Computer Society Press.

7. Andrea Arcuri. It does matter how you normalise the branch distance in search based software testing.
In Proceedings of the International Conference on Software Testing, Verification and Validation, pages
205–214. IEEE, 2010.

8. Andrea Arcuri and Lionel Briand. A practical guide for using statistical tests to assess random-
ized algorithms in software engineering. In 33rd International Conference on Software Engineering
(ICSE’11), pages 1–10, New York, NY, USA, 2011. ACM.

9. Andrea Arcuri, David Robert White, and Xin Yao. Multi-Objective Improvement of Software using
Co-Evolution and Smart Seeding. In Proceedings of the 7th International Conference on Simulated Evo-
lution And Learning (SEAL ’08), pages 61–70, Melbourne, Australia, 7-10 December 2008. Springer.

10. Andrea Arcuri and Xin Yao. Coevolving Programs and Unit Tests from their Specification. In
Proceedings of the 22nd IEEE/ACM International Conference on Automated Software Engineering
(ASE ’07), pages 397–400, Atlanta, Georgia, USA, 5-9 November 2007. ACM.

11. Andrea Arcuri and Xin Yao. A Novel Co-evolutionary Approach to Automatic Software Bug Fixing. In
Proceedings of the IEEE Congress on Evolutionary Computation (CEC ’08), pages 162–168, Hongkong,
China, 1-6 June 2008. IEEE Computer Society.

12. Fatemeh Asadi, Giuliano Antoniol, and Yann-Gaäl Guéhéneuc. Concept locations with genetic algo-
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