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Abstract

Traditional mutation testing considers only first order
mutants, created by the injection of a single fault. Often
these first order mutants denote trivial faults that are eas-
ily killed. This paper investigates Higher Order Mutants
(HOMs). It introduces the concept of a subsuming HOM;
one that is harder to kill than the first order mutants from
which it is constructed. By definition, subsuming HOMs de-
note subtle fault combinations. The paper reports the re-
sults of an empirical study into subsuming HOMs, using six
benchmark programs. This is the largest study of mutation
testing to date. To overcome the exponential explosion in
the number of mutants considered, the paper introduces a
search based approach to the identification of subsuming
HOMs. Results are presented for a greedy algorithm, a ge-
netic algorithm and a hill climbing algorithm.

1. Introduction
Mutation testing is a fault-based software testing tech-

nique initially proposed by DeMillo et al. [8] and Hamlet
[11]. Just like other fault-based testing techniques, the main
purpose of mutation testing is to measure the quality of a
test set. However, it can also be used to reduce the size of
test set [1], to generate effective test data [3] and to compare
techniques for verification [5, 13].

The mutation paradigm brings source code manipulation
to bear within the realm of software testing. In the parlance
of source code analysis and manipulation, each mutant is
created by a source-to-source transformation of the original
program. However, the goal is to insert a simulated fault.
Therefore, the transformation should be non-meaning pre-
serving, while meaning preserving transformations are es-
chewed by mutation testing because they create equivalent
mutants [10]. Indeed, traditional source code analysis has
been proposed as a technique to address this equivalent mu-
tant problem [4, 12, 20, 23], thereby further highlighting the
link between mutation testing and source code analysis and

manipulation.
In mutation testing, from a program p, a set of faulty

programs p′, called mutants, is generated by injecting faults
into the original program p. The motivation for mutation
testing is that injected faults should represent mistakes that
programmers often make. Traditionally, a mutant is gener-
ated by a single small change to the original program. For
example, Table 1 shows the mutant p′ generated by chang-
ing the and operator (&&) of the original program p into
the or operator (||) of the mutant p′. A transformation rule
that generates a mutant from the original program is known
as a mutation operator. Table 1 contains only one example
of a mutation operator; there are many others. In this paper
we adopt the 77 mutation operators for the C programming
language introduced by Agrawal et al. [2]. Each mutant p′

will be run against a test set T . If the result of running p′ is
different from the result of running p for any test case in T ,
then the mutant p′ is said to be “killed”, otherwise it is said
to have “survived”. The adequacy level of the test set T can
be measured by a mutation score that is computed in terms
of the number of mutants killed by T . Mutants can be

Table 1. A Example of Mutating Operation
Program p Mutant p′

... ...
if ( a > 0 && b > 0 ) if ( a > 0 || b > 0 )
return 1; return 1;
... ...

classified into two types: First Order Mutants (FOMs) and
Higher Order Mutants (HOMs). FOMs are generated by ap-
plying mutation operators only once. HOMs are generated
by applying mutation operators more than once.

This paper introduces the concept of subsuming HOMs.
A subsuming HOM is harder to kill than the FOMs from
which it is constructed. As such, it may be preferable to
replace the FOMs with the single HOM. In particular, the
paper introduces the concept of a strongly subsuming HOM.



A strongly subsuming HOM is only killed by a subset of the
intersection of test cases that kill each FOM from which it
is constructed.

Consider a strongly subsuming HOM, h, constructed
from the FOMs f1, ..., fn. The set of test cases that kill
h also kill each and every FOM f1, ..., fn. Therefore, h can
replace all of the mutants f1, ..., fn without loss of test ef-
fectiveness. The converse does not hold; there exist test sets
that kill all FOMs f1, ..., fn but which fail to kill h. The
FOMs cannot, even taken collectively, replace the HOM
without possible loss of test effort. This is the sense in
which h can be said to ‘strongly subsume’ f1, ..., fn.

In order to overcome the inherent computational cost
that comes with the large number of HOMs, the paper in-
troduces a search-based optimization approach to identify
these subsuming HOMs efficiently.

The main contributions of the paper are as follows:

1. We introduce the higher order mutation testing-
paradigm. We categorize the various kinds of HOM
and introduce a search-based optimization approach to
overcome the exponential explosion in the number of
HOMs.

2. The algorithms we introduce target all subsuming
HOMs, rather than specifically searching for strongly
subsuming HOMs. However, the results reveal that ap-
proximately 15% of the HOMs found turn out to be
strongly subsuming, suggesting that these highly valu-
able HOMs are not as rare as one might think.

3. We report on the relationship between subsumption
and mutant order. The results reveal that the more
FOMs a program has, the higher is the order at which
peak subsumption occurs. This is an important finding
because it means that large programs, with larger sets
of FOMs also tend to have HOMs that can subsume
a lager number of the FOMs. That is, as the problem
scale increases the ability of the solution approach to
tackle scale also increases. This finding provides evi-
dence that higher order mutation testing may turn out
to be far more scalable that first order mutation testing.

4. The paper introduces three algorithms for finding opti-
mal HOMs. The results indicate that the genetic algo-
rithm performs best overall. However, they also reveal
that each algorithm targets a different kind of HOM, so
all three algorithms are useful.

The rest of this paper is organized as follows. Section 2
introduces the idea of a subsuming HOM formally. Section
3 presents a search-based approach and explains three meta-
heuristic algorithms used to find subsuming HOMs. Section
4 explains the experimental setting, while the results are dis-
cussed in Section 5. Section 6 discusses threats to validity

of experiment. Section 7 introduces related work, and the
paper concludes with Section 8.

2. High Order Mutant Classification

HOMs can be classified in terms of the way that they are
‘coupled’ and ‘subsuming’, as shown in Figure 1. In Figure
1, the region area in the central Venn diagram represents
the domain of all HOMs. The sub-diagrams surrounding
the central region illustrate each category. For sake of sim-
plicity of exposition these examples illustrate the second or-
der mutant case; one that assumes that there are two FOMs
f1 and f2, and h denotes the HOM constructed from the
FOMs f1 and f2. The two regions depicted by each sub-
diagram represent the test sets containing all the test cases
that kill FOMs f1 and f2. The shaded area represents the
test set that contains all test cases that kill HOM h. The ar-
eas of the regions indicate the proportion of the domain of
HOMs for each category.

Following the coupling effect hypothesis, if a test set
that kills the FOMs also contains cases that kill the HOM,
we shall say that the HOM is a ‘coupled HOM’, otherwise
we shall say it is a ‘de-coupled HOM’. Therefore, in Fig-
ure 1, the sub-diagram is a coupled HOM if it contains an
area where the shaded region overlaps with the unshaded
regions. For example the sub-diagrams (a), (b) and (f).
Since the shaded region from sub-diagrams (c) and (d) do
not overlap with the unshaded regions, (c) and (d) are de-
coupled HOMs. Sub-diagram (e) is a special case of a de-
coupled HOM, because there is no test case that can kill the
HOM; there is no overlap, the HOM is an equivalent mu-
tant.

Subsuming HOMs, by definition, are harder to kill than
their constituent FOMs. Therefore, in Figure 1, the subsum-
ing HOMs can be represented as those where the shaded
area is smaller than the area of the union of the two un-
shaded regions, such as sub-diagrams (a), (b) and (c). By
contrast, (d), (e) and (f) are non-subsuming. Furthermore,
the subsuming HOMs can be classified into strongly sub-
suming HOMs and weakly subsuming HOMs. By defini-
tion, if a test case kills a strongly subsuming HOM, it guar-
antees that its constituent FOMs are killed as well. There-
fore, if the shaded region lies only inside the intersection of
the two unshaded regions, it is a strongly subsuming HOM,
depicted in (a), otherwise, it is a weakly subsuming HOM,
depicted in (b) and (c).

According to the combination of subsuming and de-
coupled HOM types, the six possibilities we considered are:
strongly subsuming and coupled (a), weakly subsuming and
coupled (b), weakly subsuming and de-coupled (c), non-
subsuming and de-coupled (d), non-subsuming, de-coupled
which is equivalent (e), and non-subsuming and coupled (f)
which is useless, as shown in Figure 1.



Formal Definitions
a. Strongly Subsuming and Coupled

Th ⊂
⋂
i

Ti and Th 6= ∅

b. Weakly Subsuming and Coupled

|Th| < |
⋃
i

Ti| , Th 6= ∅

and Th ∩
⋃
i

Ti 6= ∅

c. Weakly Subsuming and De-coupled

|Th| < |
⋃
i

Ti| , Th 6= ∅

and Th ∩
⋃
i

Ti = ∅

d. Non-Subsuming and De-coupled

|Th| ≥ |
⋃
i

Ti| , Th 6= ∅

and Th ∩
⋃
i

Ti 6= ∅

e. Non-Subsuming and De-coupled

Th = ∅ (Equivalent)

f. Non-Subsuming and Coupled

|Th| ≥ |
⋃
i

Ti| (Useless)

Figure 1. HOMs Classification. The central Venn Diagram depicts important subclasses into which HOMs fall, while the
outer diagrams depict killing test sets for the HOMs (shaded) and their constituent FOMs (unshaded). For ease of exposition, the
diagrams illustrate only the second order case, whereas the definitions cover arbitrary order. HOMs of type (a), (b) and (c) are
harder to kill than their constituent FOMs, thereby capturing subtler faults. In particular, type (a) are both subtle and useful; they
can replace their constituent FOMs because they are killed by a subset of the intersection of test cases that kill their constituents.
For a HOM h, constructed from FOMs f1, ..., fn, the test set Th contains all the test cases that kill h, while the test sets T1, ..., Tn

are the test sets that kill that kill f1, ..., fn respectively.

3 Advantages of Higher Order Mutation
Testing

At first sight, any move from FOMs to HOMs brings
with it an exponential explosion. Since a HOM is con-
structed by combining different FOMs, the number of
HOMs can be computed from the number of FOMs. Sup-
pose a program contains n FOMs; it would have nn HOMs.
For example, even a small program like Triangle has 50
lines of code (LoC) and approximately 500 FOMs. There-
fore, it is impossible to generate all of the HOMs, because
there are 101349 in all; considerably more numerous than
the number of atoms in the known universe.

Because of this exponential explosion, higher order mu-
tation testing has previously been considered to be so com-
putationally expensive as to be impractical. Furthermore,
the coupling hypothesis [8, 18, 19] suggests that the vast
majority of HOMs will be coupled to FOMs, such that test
sets that kill all FOMs will also kill almost all HOMs.

However, the few HOMs that are not coupled to their
constituent FOMs may be very important; they are killed
by a different set of test cases than their constituent FOMs.
For decoupled mutants, the act of combining FOMs shifts
the fault-revealing test set. Suppose that the act of com-
bining FOMs to form a decoupled HOM not only shifts
the fault-revealing set, but also reduces its size, so that the
HOM is harder to kill than its constituent FOMs. Surely
such a HOM would be potentially valuable in testing. In
the nomenclature we introduce in this paper, it would be a
“subsuming decoupled HOM”.

De-coupling is not the only way to produce a subsuming
HOM. Strongly subsuming HOMs are, by definition, cou-
pled, since the test sets that kill them are subsets of those
that kill each of their constituent FOMs. Therefore, both
coupled and decoupled HOMs may turn out to be harder to
kill than the FOMs from which they are constructed, mak-
ing them potentially valuable to the mutation testing pro-



cess. In this paper we focus on the subsuming HOMs in
general, and the strongly subsuming HOMs in particular,
since a strongly subsuming HOM can always be used as a
substitute for its constituent FOMs. We believe that higher
order mutation testing offers three important benefits: In-
creased subtlety, reduced effort and reduced number of
equivalent mutants.
Increased Subtlety: The vast majority of FOMs are killed
by a few very simple test cases, because many FOMs denote
trivial faults. For instance, a mutant is unlikely to remain
alive for very long if it is created by deletion of a frequently-
executed statement or the transformation of ‘+’ to ‘-’ on a
path to an output statement. Even in the presence of the
most perfunctory testing activity, these ‘dumb’ mutants will
not survive long.

However, by their very nature, the subsuming HOMs we
study in this paper are more subtle; they denote faults that
more elaborate testing may not reveal and, in so-doing, they
drive the test data generator to consider the more difficult
‘corner cases’, where undiscovered faults often reside. In
Section 6.1 we give an example of just such a subtle HOM
that our search based algorithms revealed to be constructible
from the very simple and widely studied benchmark pro-
gram: Triangle.
Reduced Test Effort: One might think that since there are
exponentially more HOMs than FOMs, higher order muta-
tion testing would be much more expensive. However, it can
be less expensive. We overcome this apparent paradox by
specifically targeting those HOMs, the strongly subsuming
HOMs, each of which can be used to replace more than one
FOM. Fewer (but better) mutants means fewer (but better)
test cases. Our higher order approach avoids dumb mutants
in favour of subtle ones. Of course, in order to find the sub-
tle HOMs we have to first construct all of their constituent
FOMs. However, this process is entirely automated by the
search-based optimization approach.

By contrast, the process of checking the original pro-
gram’s output for each the mutant-killing test cases often
requires a (human) oracle. This oracle cost is often the most
expensive part of the overall the test activity. The oracle
cost can be reduced by reducing the size of the test suite.
By moving from the first order to the higher order paradigm
we seek to reduce the number of mutants considered (simul-
taneously increasing their quality). This has the potential to
reduce test effort while improving its effectiveness.
Reduced Number of Equivalent mutants: A mutant is
said to be an ‘equivalent mutant’ if there does not exist a test
input that kills it. Unfortunately, it is undecidable, in gen-
eral, whether a mutant is equivalent. The equivalent mutant
problem has been a bugbear for mutation testing for several
decades. Although, several authors have proposed ways to
partially detect equivalent mutants [4, 12, 20, 23], the core
difficulty is the undecidability of the underlying problem.

One, hitherto largely overlooked, aspect of Offutt’s em-
pirical study of second order mutation testing [19], was the
comparatively low density of equivalent mutants found in
the second order paradigm, compared to that found in the
first order paradigm. Offutt reported that approximately 1%
of the second order mutants were found (by human exami-
nation) to be equivalent, whereas approximately 10% of the
corresponding first order mutants were found to be equiva-
lent. Furthermore, the search-based approach we advocate
specifically searches the HOM space for non-equivalent
HOMs, thereby further reducing the impact of this problem.

4. Algorithms
Due to the large number of HOMs, the cost in finding

valuable HOMs could turn out to be extremely expensive.
Therefore, using a normal undirected search is not efficient
enough to find subsuming HOMs. In order to find the sub-
suming HOMs more effectively, our approach uses three
meta-heuristic algorithms (GR, GA, HC). This section will
introduce the representation and fitness function first, and
then explain the three meta-heuristic algorithms in detail.

4.1 Representation
To identify a HOM uniquely, two types of value need to

be specified: the position at which to mutate and the mu-
tation operator to be applied. In our approach, HOMs are
represented as a vector of integers. Each element of the
vector denotes an application of a mutation operator, while
indices indicate the position at which to apply the mutation
operator.

4.2 Fitness Function
In order to measure the fitness of the HOM, a value is

needed that measures the ease with which a FOM or HOM
can be killed. Let T be a set of test cases, {M1,...,Mn} be
a set of mutants, and the kill({M1, ...,Mn}) function re-
turns the set of test cases which kill mutants M1, ...,Mn.
We shall define fragility for a set of mutants so that a sin-
gle definition caters for individual mutants (which may be
either first order or higher order), but also for sets of indi-
vidual mutants. That is the fragility of a mutant shall be
defined as follows:

Definition 1 (fragility)

fragility({M1, ...,Mn}) =
|

n⋃
i=1

kill(Mi)|

|T |

The value of fragility lies between 0 and 1. When it
equals 0 this means that there is no test case that can kill
this mutant, which indicates that this mutant is potentially
an equivalent mutant. As the value of fragility increases
from 0 to 1, the mutant is assessed to be weaker, until the



value equals 1, which means that the mutant is so weak that
it can be killed by any of the test cases. In the following, we
use M1...n to denote a HOM consisting of the FOMs F1 to
Fn. The fitness function for a HOM is defined as follows.

Definition 2 (Fitness Function)

fitness(M1...n) =
fragility({M1...n})

fragility({F1, ..., Fn})

That is the fitness of a HOM is defined to be the ratio of
the fragility of its HOM to the fragility of the constituent
FOMs. From the definition, if the fitness is greater than
1, it means the HOM is weaker than the constituent FOMs
(i.e. it is useless). As the fitness decreases from 1 to 0,
the HOM becomes gradually stronger than its constituent
FOMs. However, when the fitness value reaches 0, it is
considered as a potential equivalent HOM, and so all such
zero-valued HOMs are discarded. All of the following al-
gorithms use this fitness function to evaluate the fitness of
HOMs.

4.3 Greedy Algorithm

A greedy algorithm is an algorithm that makes local op-
timized choices at each stage with the hope of achieving
a near global optimum [7]. The general procedure of the
greedy algorithm starts from solving the first sub-problem
by selecting the solution with maximum current fitness. It
then repeats the action to solve the rest of the problem.
Therefore, it can only be used to solve a problem that can
be divided into sub-problems, and can only provide a single
solution. In order to apply the greedy approach to finding
more than one subsuming HOM, several optimized changes
have been made. An initial FOM is chosen at random as a
starting point. Subsequently, the normal greedy algorithm
process is performed to incrementally augment with addi-
tional the correct solution FOMs. An archive operation is
used to store the subsuming HOMs found. The overall algo-
rithm is iterated with repeated randomized initial position,
much like a random-restart hill climbing algorithm. The
pseudo-code is shown in Algorithm 1.

4.4 Genetic Algorithm

A genetic algorithm is an algorithm that simulates the
process of natural genetic selection according to the Dar-
winian theory of biological evolution [16]. In a genetic al-
gorithm, every possible solution within the solution domain
will be represented as a chromosome, and crossover and
mutation operation will be performed on chromosomes to
produce new solutions repeatedly, until one member of the
population denotes a suitably ‘good’ solution. The pseudo-
code is shown in Algorithm 2.

Input : Running Time Limit: limit
Output: Mutation vector homlist

set counter = 01

while counter < limit do2

set hom = generateRandFOM()3

foreach FOM m of Program do4

temp hom = combine(hom,m)5

if fitness(temp hom) >6

fitness(hom) then
hom = temp hom7

end8

archvie(temp hom)9

end10

end11

Algorithm 1: Optimized Greedy Algorithm

Input : Running Time Limit: limit
Output: Mutation vector homlist

set counter = 01

foreach Mutation m in population do2

set m = generateRandHOM()3

fitness(m)
end4

while counter < limit do5

createMtPool(population)6

archvie(population)7

crossover(population)8

mutate(population)9

fitness(population)10

counter ++11

end12

Algorithm 2: Optimized Genetic Algorithm

Input : Running Time Limit: limit
Output: Mutation vector homlist

set counter = 01

set hom = generateRandFOM()2

while counter < limit do3

temp hom = getNeighbor(hom)4

if fitness(temp hom) <5

fitness(hom) then
hom = temp hom6

archvie(hom)7

end8

hom = generateRandFOM()9

counter ++10

end11

Algorithm 3: Optimized Hill Climbing Algorithm



4.5 Hill Climbing Algorithm
A hill climbing algorithm is a local search algorithm in

which the next solution considered will depend on both
the fitness value and distance to the current solution. The
process starts from random initial solution. By compar-
ing the current solution and its neighbour solution’s fit-
ness, the greater one becomes the new current solution, un-
til fitness connot be further improved. Our optimized algo-
rithm is based on a random-restart hill climbing algorithm,
which chooses a random starting solution for each run. The
pseudo-code is shown in Algorithm 3.

5. Experiment Set Up
This section describes the set of experiments which are

designed to explore properties of subsuming HOMs. Sec-
tion 5.1 discusses the research questions that the study will
address. Section 5.2 describes the subject programs used in
this study. Sections 5.3 and 5.4 briefly overview the selected
mutation operators and the mutation tool used to implement
these experiments. Section 5.5 explains the experimental
procedure.

5.1 Research Questions
The first research question addresses the main objective

of this work; how prevalent are subsuming HOMs? If there
are very few then there would be no future for higher or-
der mutation testing. The research questions 2, 3 and 4 are
based on question 1. They further study of these subsuming
HOMs.

RQ1: How numerous are subsuming HOMs?
RQ2: What proportion of subsuming HOMs are strongly

subsuming?
RQ3: What is the relationship between mutant order and

subsumption?
RQ4: Which algorithms perform best at finding subsum-

ing HOMs?

5.2 Test Programs
The experiments use six benchmark C programs with

branch adequate test sets from the Software-artifact Infras-
tructure Repository (SIR) [9], as described in the first two
columns of Table 2. The Triangle program is a small
program that is used to determine the type of triangle from
the length of its sides. This version is the one used by
Michael and McGraw in their test data generation study
[15]. TCAS is a program used to avoid an aircraft colli-
sion. Schedule2 is a program that prioritizes schedulers.
Totinfo is a program that computes statistics from input
data. Printtokens is a lexical analyser and Space is an
interpreter for an array definition language.

There are two reasons for choosing these programs. The
first reason is that previous studies of HOMs are limited to
programs on a small scale (100 LoC). By contrast, this study
is able to consider programs from 50 to 6,000 lines of code.

The second reason is that, in order to measure the fitness of
HOMs precisely, the HOMs have to be executed against a
set of reasonably high quality test cases. The SIR provides
branch adequate test sets, thereby achieving this aim. So far
as we are aware this is the largest study of mutation testing
(first order or higher order) to date.

Table 2. Selected Test Program
Program Scale # of FOM # of SHOM
Triangle 50 LoC 584 47
TCAS 150 LoC 679 98
Schedule2 350 LoC 1,014 78
Totinfo 500 LoC 2,570 320
Printtokens 750 LoC 866 67
Space 6,000 LoC 7,570 522

5.3 Mutation Operators
The study of Agrawal et al. introduces 77 mutation oper-

ators for the C language [2]. However, not all of the muta-
tion operators increase the effectiveness of mutation testing.
Offutt [22, 25] shows that 5 of 22 FORTRAN mutation op-
erators used by Mothra are sufficient to carry out mutation
testing effectively. In our experiment, only the subset of the
C mutation operators (28 of 77) which falls into Offutt’s 5
categories will be used.

5.4 Experiment Tool: MILU

In spite of several existing mutation testing tools, there is
none designed for studying HOMs. Therefore, a new muta-
tion testing infrastructure called MILU has been developed
[28]. MILU is specially designed for the study the HOMs
in C programs, and supports general purpose of mutation
testing as well higher order study. The objective of MiLu is
to allow users to focus, on either algorithms for generating
FOMs and HOMs, or on analysing the experimental results.
MILU currently supports 70 of the 77 mutation operators
for the C language, and provides a source code analysis and
program testing environment to support full mutation test-
ings with either FOMs, HOMs or both. All of the experi-
ments are performed within the MILU mutation infrastruc-
ture. MILU supports the full C language. A full description
of the tool is beyond the scope of the present paper. We
plan to make the tool publicly available and to publish im-
plementation details.

5.5 Experiment Procedure
To answer the proposed research questions RQ1—RQ4,

the experiments are divided into two steps. The first step
aims to investigate RQ1, RQ2, and RQ3. For each candidate
program, the experiments ran the genetic algorithm (Section
4.4) to find subsumed HOMs from order 2 to 13.

The second step aims to investigate the most suitable al-
gorithm for finding the subsumed HOMs efficiently, which
addresses RQ4. RQ3 establish that for all but one program



(Space) the subsuming HOMs have orders ranging from
2 to 10. Therefore, a limit on each search for HOMs was
set to order 10. These four were run on every candidate test
program to find subsumed HOMs of order 2 to 10. To treat
the random and other search-based algorithms in a fair way
for comparison, a running-counter is placed in each of their
fitness functions. This is used to capture the effort each al-
gorithm expends on optimization.

6. Results and Analysis
Before getting into the detailed quantitative results we

first present (in Section 6.2) a case study of a single second
order HOM. This HOM illustrates the kind of subtle fault
that higher order mutation testing can reveal.

6.1 Case Study
The Triangle is a small C program (50 LoC) that has

been studied for at least 30 years [8]. The program takes
the length of sides of a triangle, and outputs whether the
triangle is a valid and whether it is equilateral, isosceles or
scalene. Program 4 shows the source of the Triangle pro-
gram. There are two main factors to decide the type of the
triangle. The first is the side length constraint; the sum of
any two sides has to be greater than the third. The second
is captured by the variable trian, whose value is used to
specify the type of the triangle. For instance, if a triangle’s
trian value equals 0, and the side lengths satisfy the side
length constraint, it is a ‘valid scalene’ triangle.

Program 4 presents the source code of Triangle pro-
gram, two FOMs and the subsuming HOM constructed
from them, which was found by our optimized genetic algo-
rithm. The way in which the HOM strongly subsumes the
two FOMs is subtle and involves an interplay between the
validity and type-of-triangle tests in the original program.
We believe that it is just this sort of subtle interaction that
leads to faults that may go unnoticed in less rigorous testing.

Table 3 summaries the reasons why this is an instance
of strong subsumption. From the table, only three types
of test cases can kill FOM i while two types of test cases
can kill FOM j. However, careful consideration reveals
that HOM ij can only be killed by test cases of the form
(a == b && a + b > c). Test cases of this form also kill
FOM i and FOM j. There is no other test case that can
kill HOM ij. Therefore, we can use strongly subsuming
HOM ij to replace both FOM i and FOM j in mutation
testing.

6.2 Analysis
To begin the analysis, the last two columns of Table

2 present the overall results for sum of all subsuming
HOMs found in all six subject programs by our GA algo-
rithm with 100,000 fitness evaluations. From the smallest

Program: Triangle
Input : Three sides a, b, c
Output : Types of Triangle

int trian1
if (a <= 0 || b <= 0 || c <= 0) then2

return INVALID3
trian = 04
if (a == b) then trian = trian + 15
if (a == c) then trian = trian + 26
if (b == c) then trian = trian + 37
if (trian == 0) then8

if (a + b < c || a + c < b || b + c < a) then9
return INVALID10

else return SCALENE11

if (trian > 3) then return EQUILATERAL12
if (trian == 1 && a + b > c) then13

return ISOSCELES14
else if (trian == 2 && a + c > b) then15

return ISOSCELES16
else if (trian == 3 && b + c > a) then17

return ISOSCELES18
return INVALID19

Mutant : FOM i ——————————————–

if (trian > 1 && a + b > c) then13
return ISOSCELES14

else if (trian == 2 && a + c > b) then15
return ISOSCELES16

else if (trian == 3 && b + c > a) then17
return ISOSCELES18

return INVALID19

Mutant : FOM j ——————————————–

if (trian == 1 && a + b <= c) then13
return ISOSCELES14

else if (trian == 2 && a + c > b) then15
return ISOSCELES16

else if (trian == 3 && b + c > a) then17
return ISOSCELES18

return INVALID19

Mutant : HOM ij ——————————————-

if (trian > 1 && a + b <= c) then13
return ISOSCELES14

else if (trian == 2 && a + c > b) then15
return ISOSCELES16

else if (trian == 3 && b + c > a) then17
return ISOSCELES18

return INVALID19

Program 4: The Triangle program together with a
strongly subsuming HOM and its two constituent FOMs.
As this case study demonstrates, even from this triv-
ially small program, extremely subtle strongly subsum-
ing HOMs can be constructed. Table 3 depicts the corre-
sponding killing test cases.



Mutant Test Case Original Result Mutant Result

M1

a == b && a + b > c Isosceles Invalid

a == c && a + b > c && a + c <= b Invalid Isosceles

b == c && a + b > a && b + c <= a Invalid Isosceles

M2
a == b && a + b > c Isosceles Invalid

a == b && a + b <= c Invalid Isosceles

M12 a == b && a + b > c Isosceles Invalid

Table 3. Killing Test Cases for the Triangle HOM and its FOMs

Triangle program (50LoC) to the largest Space pro-
gram (6,000Loc), there exist subsuming HOMs. Further-
more, the quantity of the HOMs increases substantially as
the number of FOMs increases. For instance, there are 584
FOMs and 47 subsuming HOMs in Triangle while there
are 7,570 FOMs and 522 HOMs in the program Space.

Of all subsuming HOMs found in our experiments, ap-
proximately 15% of these were found to be of the highly
valuable, strongly subsuming type. This is a very encourag-
ing finding. It means that there may be many cases where a
set of first order mutants may be replaced by a higher order
mutant, thereby reducing the number of mutants required
overall.

The chart in Figure 2 presents the overall order distribu-
tion for all six test programs. In the chart, each type of
line represents one of the studied programs. The x-axis
shows the mutant order number and the y-axis shows the
number of subsuming HOMs found. Therefore, the peak
value of each line represents the largest number of subsum-
ing HOMs that can be found by the order that shows on the
x-axis. The figure answers RQ3. It shows that subsuming
HOMs are unevenly distributed. This peak order is named
peak subsumption in this paper; one that is correlated with
the total number of its FOMs. There are insufficiently many
programs for us to meaningfully apply Spearman Rank cor-
relation test but observe that the evidence for correlation is
compelling; the ordering by peak subsumption and the or-
dering number of FOMs are identical.

The chart in Figure 3 presents the result of comparison
of the four algorithms (see Section 4), which answers the
RQ4. We use an oracle of all subsuming HOMs found,
to provide a reference against which each algorithm is as-
sessed. The oracle contains the union of resulting subsum-
ing HOMs from each algorithm. The greater the percentage
of this oracle an algorithm can find, the better is the algo-
rithm. In Figure 3, the x-axis shows the four algorithms, and
y-axis shows the percentage of oracle HOMs found. From
the chart, the bar for the randomized algorithm is the low-
est, as expected. The genetic algorithm bar is the highest.
We believe that the algorithm performs best, because the
subsuming HOMs are easier to generate from existing sub-

suming HOMs. In the genetic algorithm, this observation
favours crossover, which is one of the genetic algorithm’s
distinguishing features. The optimized hill climbing algo-
rithm is second best; slightly better than greedy.

Although the genetic algorithm found more of the sub-
suming HOMs, the hill climbing algorithm and the greedy
algorithm also have their advantages. The hill climbing al-
gorithm always finds the highest fitness HOMs, because its
subroutine repeatedly improves the fitness of HOMs, while
the greedy algorithm finds the highest order HOMs, because
it starts from a random FOM, and tries to achieve as high an
order as possible.

7. Threats to Validity and Limitations
This section considers the threats to validity of our ex-

periments. Although due to limitations of the experiments,
the following threats may affect some of the results, for
instance, the distribution and classification of subsumed
HOMs, it should be noted that they do not affect the proof
of the existence of strongly subsuming HOMs found by the
experiments.

The selection of mutation operators is the first threat. In
order to reduce the computational cost, in our experiment,
28 of 77 C mutation operators were selected to generate
HOMs. However, the selected subset belongs to the five
selective mutation operator categories suggested by Offutt
[21, 22, 25], so it is typical and also widely used by other
researchers. The threat to validity will be overcome by fu-
ture work which will investigate the relationship between
HOMs and mutation operators.

The quality of the test sets is another potential threat.
Since the fitness of HOMs is computed in terms of their
fragility, low quality test sets may affect the results. Al-
though the test sets provided by SIR achieve brunch cover-
age [9], given a different test set as input, the experiment
may lead to different results in terms of distribution and
classification. To overcome this threat we plan, in future
work, to combine higher order mutation testing with the co-
evolutionary mutation testing approach of Adamopoulos et
al. [1]. This will allow us to co-evolve test sets adequate to
kill the co-evolving HOM set.



Figure 2. Overall Order Distribution of Valuable HOMs The key lists the 6 programs in ascending order determined
by their scale. Note the correlation between this ‘order of problem scale’ and the order denoted by the sequence of points of maximal
subsumption.

The last threat is equivalent mutants. Although the prob-
lem of equivalent mutants has been studied by numerous re-
searches [12, 20, 24], there is no approach that can solve it
in both an effective and a precise way. In order to avoid this
problem, the fitness function for finding interesting HOMs
is designed to filter out potential equivalent mutants. With
a low quality test set, some of the ‘stubborn decoulped’
HOMs may be wrongly treated as equivalent mutants. How-
ever, this would only reduce the number of HOMs found,
so our results can be considered to be a lower bound on the
number of subsuming HOMs to be found.

8. Related Work
The main research area related to this work is the cou-

pling effect hypothesis. Although the coupling effect has
been studied by many researches [6, 17, 18, 19, 26, 27],
these studies all focus on verifying or disproving the cou-
pling effect, rather than finding subsuming HOMs.

The experimental studies presented by Offutt [18, 19]
show results that support the mutation coupling effect.
However, Offutt modifies Demillo et al.’s statement that all
HOMs are coupled to weaken it to suggest that the vast ma-
jority, are coupled. Some of our ‘subsuming HOMs’ are
drawn from the minority ‘de-coupled’ mutant set. Offutt’s
experiments were based on three small FORTRAN77 pro-
grams (16-28 LOC).

All of the second order and some of third order mutants
of these programs were generated by the mutation testing
tool Mothra. The results suggested that the selected ade-
quate test set which killed all the first order mutants, killed
over 99% of the second and third order mutants. This study
implied that the mutation coupling effect is valid in the most
general case, which also agreed with the empirical study by
Lipton and Sayward [14] and Morell[17].

The validity of the mutation coupling effect has also been
considered in a theoretical study by Wah [26, 27]. A simple
theoretical model, the q function model, considers a pro-
gram to be a set of finite functions. By applying test sets of

order 1 and order 2 to this model, the results indicated that
the average survival ratio of high-order mutants is 1/n and
1/n2 respectively, which is also similar to the estimated re-
sults of empirical studies mentioned above. However, com-
pared to a real world program, this model is very simplistic.
In real programs, the data and control flow between func-
tions are more complex and unpredictable.

In this paper we are interested in de-coupled HOMs (the
exceptions to the coupling effect hypothesis), where these
decoupled HOMs are also subsuming. However, these
HOMs are only a part of our story. We are also interested in
coupled HOMs; these obey the coupling effect hypothesis,
but may be strongly subsuming. Our studies indicate that up
to 15% of all subsuming HOMs may be strongly subsum-
ing. This is an extremely encouraging finding. It indicates
that higher order mutation testing may have been incorrectly
overlooked by previous work on mutation testing.

Figure 3. Comparison Of Four Algorithms

9. Conclusion
This paper has introduced the concept of subsuming

HOMs and higher order mutation testing. The paper has
also introduced a search-based approach to find these sub-
suming HOMs and presented an empirical study that com-
pares a greedy algorithm, a genetic algorithm and a hill
climbing algorithm.



The experimental results indicate that there exist many
subsuming HOMs in each studied program. The results also
reveal that genetic algorithm is the most efficient algorithm
for finding those subsuming HOMs, while the greedy algo-
rithm and hill climbing algorithm can also be used to im-
prove the quality of the results.

Future work will investigate strongly subsuming
HOMs in detail and evaluate the extent to which they can
reduce mutation testing effort and increase its effectiveness.
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