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Abstract. Recently there has been an upsurge of interest in both, Search–
Based Software Testing (SBST), and Dynamic Symbolic Execution (DSE).
Each of these two approaches has complementary strengths and weak-
nesses, making it a natural choice to explore the degree to which the
strengths of one can be exploited to offset the weakness of the other. This
paper introduces an augmented version of DSE that uses a SBST–based
approach to handling floating point computations, which are known to
be problematic for vanilla DSE. The approach has been implemented as
a plug in for the Microsoft Pex DSE testing tool. The paper presents re-
sults from both, standard evaluation benchmarks, and two open source
programs.

1 Introduction
It is widely believed that automating parts of the testing process is essential for
successful and cost effective testing. Of the many approaches to automated test
data generation in the literature, two important and widely studied schools of
thought can be found in the work on Search–Based Software Testing (SBST)
and Dynamic Symbolic Execution (DSE). This paper proposes an augmented
approach to tackle the problem of floating point computations in DSE. It has
been implemented as an extension to the Microsoft DSE testing tool Pex.

SBST and DSE have different strength and weaknesses. For instance, SBST
provides a natural way to express coverage based test adequacy criteria as a
multi–objective problem [6], while DSE is better suited to discover the structure
of the input to the system under test. Yet there has been little work in trying
to combine SBST and DSE.

Inkumsah and Xie [8] were the first authors to propose a framework (EVA-
CON) combining evolutionary testing with DSE. Their framework targets test
data generation for object oriented code written in JAVA. They use two exist-
ing tools, eToc [18], an evolutionary test data generation tool, and jCUTE [16],
a DSE tool. eToc constructs method sequences to put a class containing the
method under test, as well as non–primitive arguments, into specific desirable
states. jCUTE is then used to explore the state space around the points reached
by eToc.

Majumdar and Sen [10] combined random testing with DSE in order to
address the state problem in unit testing. A random search is used to explore
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the state space, while DSE is used to provide a locally exhaustive exploration
from the points reached by the random search.

Neither of the two approaches addresses the issue of floating point com-
putations in DSE, which originate from limitations of most constraint solvers.
Constraint solvers approximate constraints over floating point numbers as con-
straints over rational numbers. Because computers only have limited precision,
solutions which are valid for rational numbers are not always valid when mapped
to floating point numbers. Thus, Botella et al. [2] proposed a constraint solver
based on interval analysis in order to symbolically execute programs with float-
ing point computations. A limitation of their work is that it does not consider
combinations of integers and floating point expressions.

The approach proposed in this paper differs from previous work in that it
provides a general framework for handling constraints over floating point vari-
ables. It is also the first paper to propose a combination of DSE with SBST in
order to improve code coverage in the presence of floating point computations.

The rest of the paper is organized as follows: Section 2 presents a brief
overview of SBST and DSE, and the two search algorithms implemented. Sec-
tion 3 describes the DSE tool Pex and how it has been extended with arithmetic
solvers for floating point computations. The empirical study used to evaluate the
solvers, analysis of the results, and threats to validity are presented in Section 4.
Section 5 concludes.

2 Background

2.1 Dynamic Symbolic Execution

In DSE [5, 17] the goal is to explore and execute the program to achieve struc-
tural coverage, based on analysis of the paths covered thus far. DSE combines
symbolic and concrete execution. Concrete execution drives the symbolic explo-
ration of a program, and runtime values can be used to simplify path constraints
produced by symbolic execution to make them more amenable to constraint
solving. Consider the example shown in Figure 1 and suppose the function is ex-
ecuted with the inputs a=38 and b=100. The execution follows the else-branch
at the if-statement. The corresponding path condition is (int) Math.Log (a0)
6= b0, where a0 and b0 refer to the symbolic values of the input variables a and
b respectively. In order to explore a new execution path, the path condition
is modified, for example by inverting the last constraint, i.e. (int) Math.Log
(a0) = b0. However, suppose that the expression (int)Math.Log(a) cannot be
handled by a particular constraint solver. In order to continue testing, DSE re-
places the expression (int)Math.Log(a) with its runtime value, for example 3.
The path condition can thus be simplified to 3 == b0, which can now be solved
for b0. Executing the program with the (updated) input values a=38 and b=3

traverses the then-branch of the if-statement.

2.2 Search–Based Testing

The field of SBST began in 1976 with the work of Miller and Spooner [11], who
applied numerical optimization techniques to generate test data which traverses
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void testme2(double a, int b)

{

if( (int)Math.Log(a) == b )

//

}

Fig. 1. Example used for demonstrating dynamic symbolic execution and search–based
testing.

a selected path through the program. In SBST, an optimization algorithm is
guided by an objective function to generate test data. The objective function is
defined in terms of a test adequacy criterion. Recall the example from Figure 1
and suppose the condition in the if-statement must be executed as true. A
possible objective function is |(int)Math.Log(a) − b|. When this function is 0,
the desired input values have been found. Different functions exist for various
relational operators in predicates [9] and objective functions have been developed
to generate test data for a variety of program structures, including branches and
paths [19].

2.3 Alternating Variable Method

A simple but effective optimization technique [7], known as the Alternating Vari-
able Method (AVM), was introduced by Korel [9] in the 1990s. It is a form of hill
climbing and works by continuously changing an input parameter to a function
in isolation. Initially all (arithmetic type) inputs are initialized with random val-
ues. Then, so called exploratory moves are made for each input in turn. These
consist of adding or subtracting a delta from the value of an input. For integral
types the delta starts off at 1, i.e., the smallest increment (decrement). When
a change leads to an improved fitness value, the search tries to accelerate to-
wards an optimum by increasing the size of the neighborhood move with every
step. These are known as pattern moves. The formula used to calculate the delta
added or subtracted from an input is: δ = 2it ∗ dir ∗ 10−preci , where it is the
repeat iteration of the current move (for pattern moves), dir either −1 or 1, and
preci the precision of the ith input variable. The precision applies to floating
point variables only (i.e. it is 0 for integral types). It denotes a scale factor for
the size of a neighborhood move. For example, setting the precision (preci) of
an input to 1 limits the smallest possible move to ±0.1. Increasing the precision
to 2 limits the smallest possible move to ±0.01, and so forth.

Once no further improvements can be found for an input, the search continues
optimizing the next input parameter, and may recommence with the first input
if necessary. In case the search stagnates, i.e. no move leads to an improvement,
the search restarts at another randomly chosen location in the search–space.
This is known as a random restart strategy and is designed to overcome local
optima and enable the AVM to explore a wider region of the input domain for
the function under test.
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2.4 Evolution Strategies

Evolution Strategies (ES) date back to the 1960s and were popularized in the
early ‘70s by Rechenberg [14] and Schwefel [15]. They belong to the family of
Evolutionary Algorithms (EA). In an EA, a population of individuals evolves
over a number of generations. Between each generation, genetic operators are
applied to the individuals, loosely representing the effects of mating (crossover)
and mutation in natural genetics. The net effect of these operations is that the
population becomes increasingly dominated by better (more fit) individuals.

In an ES, an individual has at least two components: an object vector (i.e.
containing the inputs to the function under test) and a strategy parameter vec-
tor. The strategy parameters ‘evolve’ themselves as the search progresses. Their
role is to control the strength of the mutations of the object vector, so that
the ES can self–adapt to the underlying search landscape. For example, if the
search is far away from a global optimum, large mutations enable it to make
faster progress towards an optimum. Conversely, the closer the search is to an
optimum, smaller mutations may be necessary to reach the optimum.

3 Implementation

We will now describe how the AVM from Section 2.3 and the ES from Sec-
tion 2.4 have been implemented as a Pex extension called FloPSy (search-based
Floating Point constraint solving for Symbolic execution). The extension is open
source and available online from the codeplex website; URL: http://pexarith-
meticsolver.codeplex.com.

3.1 Pex

Pex [17] is a test input generator for .NET code, based on DSE; test inputs
are generated for parameterized unit tests, or for arbitrary methods of the code
under test.

Pex can symbolically represent all primitive values and operations, including
floating point operations and calls to pure functions of the .NET Math class.
Note that unlike traditional DSE, Pex only simplifies constraint systems by
using concrete values when the code under test invokes an environment-facing
method, i.e. a method that is defined outside of .NET, and not part of the Math
class.

Pex implements various heuristics to select execution paths. The constraint
solver Z3 [3] is used to decide the feasibility of individual execution paths. Z3 is a
Satisfiability Modulo Theories (SMT) solver, which combines decision procedures
for several theories. However, Z3 does not have a decision procedure for floating
point arithmetic. When Pex constructs constraint systems for Z3, all floating
point values are approximated by rational numbers, and most operations are
encoded as uninterpreted functions. Pex supports custom arithmetic solvers to
work around this restriction.

Path selection and path constraint solving: Given a program with input
parameters, Pex generates test inputs in an iterative fashion. At every point
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in time, Pex maintains a representation of the already explored execution tree
defined by the already explored execution paths of the program. The branches
of this tree are annotated by the branch conditions (expressed over the input
parameters). In every step of the test input generation, Pex selects an already
explored path prefix from the tree, such that, not all outgoing branches of the
last node of the path prefix have been considered yet. An outgoing branch has
been considered when it has been observed as part of a concrete execution path,
when it has been classed as infeasible, or when constraint solving timed out.
Pex then constructs a constraint system that represents the condition under
which the path prefix is exercised, conjoined with the negation of the disjunction
of all outgoing branch conditions. If a solution of this constraint system can
be obtained, then we have found a new test input which – by construction –
will exercise a new execution path which was not part of the already explored
execution tree. The path is then incorporated into the tree.

The successive selection of path prefixes plays a crucial role for the effective-
ness of test generation. If the program contains unbounded loops or recursion,
the execution tree might be infinite, and thus the selection of path prefixes must
be fair in order to eventually cover all paths. Even if loops and recursion are
bounded, or if the program does not contain loops and recursion, a fair selection
is still important to achieve high code coverage fast. Pex implements various
heuristic strategies to select the next path prefix [21], incorporating code cover-
age metrics and fitness functions.

Each constraint system is a Boolean-valued expression over the test inputs.
Pex’ expression constructors include primitive constants for all basic .NET data
types (integers, floating point numbers, object references), and functions over
those basic types representing particular machine instructions, e.g. addition and
multiplication, and the functions of the .NET Math class. Pex uses tuples to
represent .NET value types (“structs”) as well as indices of multi-dimensional
arrays, and maps to represent instance fields and arrays, similar to the heap
encoding of ESC/Java [4]: An instance field of an object is represented by a
field map which associates object references with field values. For each declared
field in the program, there is one location in the state that holds the current
field map value. An array type is represented by a class with two fields: a length
field, and a field that holds a mapping from integers (or tuples of integers for
multi-dimensional arrays) to the array elements. Constraints over the .NET type
system and virtual method dispatch lookups are encoded in expressions as well.
Most of Pex’ expressions can be mapped directly into SMT theories for which
Z3 has built-in decision procedures, in particular propositional logic, fixed sized
bit-vectors, tuples, arrays, and quantifiers. Floating point values are functions
that are a notable exception.

Extension mechanism for floating point constraint solving: If some con-
straints refer to floating point operations, then Pex performs a two-phase solving
approach: First, all floating point values are approximated by rational numbers,
and most operations are encoded as uninterpreted functions, and it is checked
whether the resulting constraint system is satisfiable; if so, a model, i.e. a sat-
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isfying assignment, is obtained. (Note that this model includes a model for the
uninterpreted functions, which might not reflect the actual floating point se-
mantics.) Second, one or more custom arithmetic solvers are invoked in order to
correct the previously computed model at all positions which depend on floating
point constraints.

Consider for example the following method.

void foo(double[] a, int i){

if (i >= 0 && i < a.Length &&

Math.Sin(a[i]) > 0.0) {

...

}

}

In order to enter the then-branch of the if-statement, the three conjuncts must
be fulfilled. Using Z3, we may obtain a model, i.e. a satisfying assignment, where
i = 0 and a.Length = 1 and a[i] = 0/1 (0 or 1) and Math.Sin(0/1) = 1/1 is a
solution of the constraint system, when approximating floating point values with
rational numbers, and treating Math.Sin as an uninterpreted function (which
gets an interpretation as part of the model).

As this model does not hold with the actual interpretation of Math.Sin over
floating point values, in a second phase custom arithmetic solvers are invoked.
Here, there is a single relevant arithmetic variable x, which represents the heap
location a[i], and a single relevant arithmetic constraint Math.Sin(x) > 0.0.
The relevant constraints and variables are computed by a transitive constraint
dependency analysis, starting from the constraints which involve floating point
operations. To avoid reasoning about indirect memory accesses by the custom
arithmetic solver, each symbolic heap location, e.g. a[i] is simply treated as a
variable, ignoring further dependent constraints relating to the sub-expressions
of the symbolic heap location.

Default behavior for floating point constraints: By default, Pex version
0.91 employs two custom arithmetic solvers: a solver based on trying a fixed num-
ber of (pseudo) random values, and a solver based on an early implementation
of the AVM method. To conduct the experiments presented later in Section 4,
all custom solvers can be selectively enabled and disabled.

3.2 Custom Solvers

The extension for the custom arithmetic solvers can be enabled by including the
PexCustomArithmeticSolver attribute at a class, or, at the assembly level (via
[assembly: PexCustomArithmeticSolver]) of the assembly being tested with
Pex.

Fitness Function: The fitness function used by the custom solvers is defined in
terms of the comparison operators that appear in the constraints, and is similar
to what is commonly referred to as the branch distance measure in SBST [19].
The inputs to the fitness function are the original set of constraints, alongside
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the current model constructed by the custom solvers. The function computes a
distance value for each constraint, and the overall fitness is the sum of these val-
ues. The computation of the distance value depends on the comparison operators
in the constraints, as shown in Table 1.

Table 1. Relational operators used in Pex and corresponding distance functions. K is
a failure constant (set to 1).

Operator Pex representation Distance function

a = b a = b if |a− b| = 0 then 0 else |a− b|
a 6= b (a = b) = 0 if |a− b| 6= 0 then 0 else K
a < b a < b if a− b < 0 then 0 else a− b
a ≤ b (b < a) = 0 if a− b ≤ 0 then 0 else a− b
a > b b < a if b− a < 0 then 0 else b− a
a ≥ b (a < b) = 0 if b− a ≤ 0 then 0 else b− a

AVM: The AVM starts by building a vector of symbolic variables that forms
the basis of the exploratory moves. An index variable is used to keep track of
the element in the vector currently being optimized. Further, each element has
an associated precision variable. The precision is used to control the size of a
neighborhood move, as described in Section 2.3, and is initialized to 0 for all
variables, regardless of type (i.e. float,double, etc.).

Neighborhood Moves:
Every delta is computed as a double precision variable before being converted
to the type of the variable (i.e. decimal, integer etc.) currently being modified.
For an exploratory move, dir (from Section 2.3) starts off as −1. If the move
is rejected, dir is changed to 1. If neither exploratory move is accepted (i.e.
produces a lower fitness value than the current best model), the AVM moves
on to the next element in its vector and resets dir to −1. Conversely, if a move
is accepted, the AVM continues with pattern moves for as long as there is an
improvement in fitness values. Every pattern move simply increases the variable
it from Section 2.3 by 1. When a pattern move is rejected, the AVM restarts
with exploratory moves for the first element in its vector.

Once the AVM reaches the last element in its vector, and each exploratory
move of that element is rejected, the search is stuck (either on a plateau or local
optima).

Precision of Floating Point Variables:
One possible cause for the search to get stuck is that the size of the neighborhood
move is too coarse. Therefore, before performing a random restart, the AVM
checks if the precision of a variable (see Section 2.3) can be increased. In C#,
single–precision variables (i.e. float) contain about 7 decimal digits of precision,
while double–precision variables (i.e. double) contains about 15 decimal digits
of precision. The AVM only changes the precision (preci) for a variable, if adding
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the value 10−preci has an effect, or, preci is less than 7 or 15 for single and double
precision type inputs respectively.

Random Restarts:
The main strategy for overcoming local optima is to perform a random restart.
Two types of restarts are considered. The first is a global, and the second a
local restart. In a global restart, all variables in the AVM’s vector are assigned
new random values. This is likely to place the starting point for the next hill
climb far away from the local optimum where the search got stuck. While this
is desirable in many cases, it is not an ideal strategy when a global optimum
is surrounded by many local optima. Chances are the search will just get stuck
at the same local optimum again. Therefore, the AVM also uses a local restart,
which is designed to stay in the vicinity of the current search space while still
being able to escape from the optimum.

In a local restart, a random number r (between 0 and 1) is created for each
variable. This number is ‘scaled’ by the formula 10−preci ∗ r, where preci is
the current precision of the ith variable. The ‘scaled’ random number is then
added to the existing value of the variable. If a local restart does not enable the
search to make further progress, a global restart is performed. Thus, the AVM
alternates between local and global restarts.

ES: Most EAs allow a wide range of configuration options and ES are no dif-
ferent. A user can configure the solver through various environment variables.
es_solver_parents controls the size of the parent population µ (default: 15);
es_solver_offspring sets the size of the offspring population (default: 100);
es_solver_recomb sets the recombination strategy; es_solver_mut sets the
mutation strategy.

The ES solver starts by creating an initial parent population of µ individ-
uals. Each individual contains a model and a strategy parameter vector such
that every variable in the model has a corresponding strategy parameter. The
parameters are initialized to 1 and all the variables in the models are assigned
random values.

The main loop of the ES solver involves recombination, mutation and selec-
tion steps. If a user specified a recombination strategy, two parents are repeatedly
recombined to produce a single offspring until the offspring population is full.
Then, a mutation operator is applied to each offspring in turn. The mutation
operators first mutate the strategy parameter(s), and then the input variables.
Once all offspring have been evaluated, they are combined with the parent popu-
lation and ranked according to their fitness value. The top ranked individuals are
then chosen to replace the parent population, thus forming the next generation
of parents. We will now describe the reproduction operators in more detail.

Recombination: One of the genetic operators in an ES is the recombination
operator where two or more parents are combined to produce one offspring. The
ES solver supports the following recombination strategies:

Discrete:
In a discrete recombination, two parent individuals are chosen uniformly from
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the parent population. Then, each variable in the offspring is assigned the value
from either parent. Parents have an equal probability of contributing towards
the offspring. The same applies for the strategy parameter vector, that is, the
offspring receives each strategy parameter from either parent with equal proba-
bility.

Global Discrete:
This recombination strategy is similar to discrete recombination. The only dif-
ference is that for each variable (and each strategy parameter), a new set of
parents is chosen (uniformly).

Intermediate:
During an intermediate recombination, two parents are chosen uniformly. For
each variable in the offspring, the values of the corresponding parent variables
are added together, and the sum is multiplied by 0.5, before being assigned to
the offspring. The same is done for each strategy parameter.

Global Intermediate:
Similarly, in a global intermediate recombination, each variable and each strategy
parameter are chosen from a new set of parents, before combining them in the
same way as described in the intermediate strategy.

Mutation: Traditionally mutation was the main means of reproduction in ES.
The custom solver supports the following mutation strategies:

Single:
In a single mutation strategy an individual only uses one strategy parameter, σ,
for all variables. In addition, the mutation operator contains a learning parameter
τ . It implements the following equations:

τ := 1/
√
n (1)

σ′ := σ ∗ exp (τ ∗N(0, 1)) (2)

vi := vi + σ′ ∗Ni(0, 1), i = 1, . . . , n (3)

First, the strategy parameter σ of an offspring is mutated to produce σ′. N(0, 1)
denotes a random number from a standard univariate normal distribution. The
mutated strategy parameter is then used to control the mutation of the vari-
ables. For each variable (from 1, . . . , n), a new random number from a standard
univariate normal distribution is multiplied by σ′, and then added to the existing
value of the variable.

Multi:
This mutation strategy contains two learning parameters, a global one, τ0, and a
local one, τ . Further, each variable uses its own strategy parameter. The following
equations are implemented:
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τ0 := 1/
√
2 ∗ n (4)

τ := 1/

√
2 ∗

√
n (5)

σ′
i := σi ∗ exp (τ0 ∗N(0, 1) + τ ∗Ni(0, 1)), i = 1, . . . , n (6)

vi := vi + σ′
i ∗Ni(0, 1), i = 1, . . . , n (7)

4 Empirical Study

The empirical study was split into two parts. The first part contains a set of
benchmark functions which are commonly used to evaluate optimization algo-
rithms [12]. The second part consists of two real world programs comprising
152, 372 lines of C# code (as reported by the SLOCCount tool [20]).

4.1 Benchmark Functions

Details of the benchmark subjects are recorded in Table 2. The optimization
problem is to find the minimum of each function (i.e. 0). The functions were
formulated as a single if-statement, with the then-branch declared as a test
data generation goal for Pex. 100% block coverage of the methods indicates that
the Pex goal has been reached.

Table 2. Summary of the benchmark functions and their C# representation.

Function C# representation
Beale (1.5 - x1 * (1 - x2)) == 0
Freudenstein And Roth (-13 + x1 + ((5 - x2) * x2 - 2) * x2) + (-29 + x1 + ((x2 + 1) * x2 -

14) * x2) == 0
Helical Valley Function double theta(double x1,double x2) { if(x1 > 0) return Math.Atan(x2

/ x1) / (2 * Math.PI); else if (x1 < 0) return (Math.Atan(x2 / x1) /
(2 * Math.PI) + 0.5); else return 0; }

(10 * (x3 - 10 * theta(x1, x2))) == 0 && (10 * (Math.Sqrt(x1 * x1 +
x2 * x2) - 1)) == 0 && x3 == 0

Powell (Math.Pow(10, 4) * x1 * x2 - 1) == 0 && (Math.Pow(Math.E, -x1)
+ Math.Pow(Math.E, -x2) - 1.0001) == 0

Rosenbrock Math.Pow((1 - x1), 2) + 100 * (Math.Pow((x2 - x1 * x1), 2)) == 0
Wood (10 * (x2 - x1 * x1)) == 0 && (1 - x1) == 0 && (Math.Sqrt(90) *

(x4 - x3 * x3)) == 0 && (1 - x3) == 0 && (Math.Sqrt(10) * (x2 +
x4 - 2)) == 0 && (Math.Pow(10, -0.5) * (x2 - x4)) == 0

4.2 Real World Open Source Programs

Details for the two open source programs are shown in Table 3. Both programs
are written in C# and were chosen specifically because they contain arithmetic
operations over floating point variables. Alglib [1] is a numerical analysis and
data processing library, and QLNet [13] is a library for quantitative finance
operations.
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Table 3. Details of the open source programs.

Program SLOC Pex Methods Tested

Alglib 62,271 608 514

QLNet 90,101 3,123 3,068

Total 152,372 3,731 3,582

4.3 Experimental setup

The benchmark functions, Alglib, and QLNet source files were assembled into
a single Visual Studio (VS) project each. We then created three test projects
via the Pex → Create Parameterized Unit Tests command. This generates a
PexMethod for every public method in the original source code. A PexMethod

represents a parametrized unit test and serves as an entry point for the DSE.

If the arguments to a test function contain complex type objects, Pex may
need help in constructing meaningful inputs in order to achieve a higher level of
code coverage. Pex provides various mechanisms to that effect such as factory
methods and the Moles framework. For the experiments, none of the generated
parameterized unit tests were modified, and no factory methods or ‘moled’ ob-
jects were used.

The fitness budget for the random search used by Pex, the AVM and ES was
limited to 100, 000 fitness evaluations. The ES was configured to have 15 par-
ents, produce 100 offspring per generation, use a Global Discrete recombination
strategy and the Single mutation operator described in Section 3.2.

Setup for Benchmarks:
Pex contains a number of options to bound its exploration. For example, the
default time out for Pex’s constraint solver is 1 second. We increased this limit
to 10, 000 seconds for the constraint solvers (/mcst option) and also increased
the time limit for an exploration to the same amount. Then, we ran Pex for each
PexMethod with: 1) only the constraint solver Z3 enabled, 2) a random search
and Z3 enabled, 3) the AVM and Z3 enabled, 4) the ES and Z3 enabled.

Apart from the configuration with only Z3 enabled, we repeated the runs
30 times for each benchmark, due to the stochastic nature of both the AVM
and the ES. A list of 30 random number seeds was used to seed the random
number generator in Pex (by setting the environment variable er_random_seed).
Repeating experiments for a stochastic algorithm samples its behavior for a given
problem, and thus reduces the risk that any observed change in effectiveness is
due to chance.

Setup for Open Source Programs:
For the open source programs it was necessary to restrict the execution time
of Pex and its constraint solvers to make the study scalable. Many of the func-
tions tested contained unbounded loops and complex constraints over arithmetic
types, which slow down the exploration of a program. Therefore, we allowed Pex
60 seconds per PexMethod (/to option), and set the time out for its constraint
solvers to 20 seconds (/mcst option).



12 K. Lakhotia et al.

Further, because the programs comprised 3, 731 functions, we did not re-
peat the experiments 30 times for each function. We believe that the risk of
any observed difference when using the custom solvers being due to chance, is
sufficiently mitigated by using such a large pool of functions.

4.4 Analysis

Benchmarks:
Figure 2 summarizes the results in terms of block coverage for the benchmark
functions. Overall, the ES solver is the most effective, achieving 100% block
coverage for 5 out of 6 functions. It is also the only algorithm that finds the
optimum of the Rosenbrock function, which has a large, almost flat valley near
the optimum. The AVM fails to reach the Pex goal for the Rosenbrock function,
and also fails in 3 out of 30 runs for the Beale function. Neither solver achieves
full coverage of the Powell function.

These figures show that the custom solvers can improve the coverage of Pex
for floating point computations. However, they also show that the mapping be-
tween rational numbers and floating point numbers is not always a problem in
practice. For 3 out of 6 functions Pex was able to achieve 100% block coverage
without using any heuristics on top of Z3.
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Fig. 2. Block coverage achieved with the different configurations of Pex on the bench-
mark problems. 100% coverage means the testing goal has been reached.

Open Source Programs:
Next, we looked at two open source programs to gain a better understanding of
what benefits the custom solvers might offer to a user in practice. During this
study, the random search in Pex remained enabled, and we turned on the AVM
and ES solvers on top of it; i.e. they only get invoked when Z3 or the random
search fail to find a solution.

Table 4 reports the coverage for Pex (with a random search), Pex and the
AVM, and Pex and the ES solver enabled. Coverage was measured using the
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reports produced by Pex and shows the ratio of blocks covered to the total num-
ber of blocks discovered by Pex (during its DSE). The ‘Failed Methods’ column
indicates the number of methods for which Pex was terminated abnormally af-
ter 60 seconds. Those methods do not contribute to the coverage reported, i.e.
blocks covered during runs which were terminated, are ignored.

Strikingly, the results show that the coverage with the AVM solver enabled,
is less than with the custom solvers disabled. The ES solver only marginally
increases the coverage compared to Pex’s default solvers (i.e. Z3 and random
search). When the custom solvers are enabled, they will, on average, take around
5 seconds to either find a solution or exhaust their fitness budget. However, as
can be seen from Table 5, there are instances where the AVM (438 times) and
ES (310 times) were terminated after 20 seconds. Obviously, any time spent in
one of the custom solvers is no longer available to Pex to explore different parts
of the program. A random search is very fast, and if it fails, Pex can quickly
‘move on’. Thus, it can spend more time exploring execution paths which do not
depend on floating point computations, thereby increasing the overall level of
coverage.

The results from Table 4 suggest that the custom solvers proposed in this
paper should only be enabled if the code is known to produce many constraints
over floating point variables. In such an event, sufficient resources, in terms of
fitness evaluations as well as runtime, should be allocated for the solvers to be
effective (e.g. as was the case for the benchmark functions). One has to also
bear in mind that we do not know how many of the constraints passed to the
custom solvers were infact infeasible. Since the solvers have no way of checking,
infeasible constraints will cause the solvers to exhaust either their fitness budget
or their time out, thus wasting valuable exploration time.

Table 4. Block coverage achieved by Pex, Pex+AVM, and Pex+ES for the open source
programs. Coverage is reported as a percentage of blocks discovered by Pex and blocks
covered. The ‘Failed Methods’ columns indicate the number of methods for which Pex
was terminated after 1 minute. Any blocks covered in those methods are not counted.
The ‘Time’ column reports the total wall clock time spent inside the AVM and ES
solvers.

Program Pex Pex+AVM Pex+ES

Cov. Failed Cov. Failed Time Cov. Failed Time
Methods Methods Methods

Alglib 43.86% 32 41.04% 40 02:42:42 44.13% 77 01:53:15

QLNet 43.54% 24 44.46% 31 01:06:02 46.84% 45 00:54:39

Another interesting question is how often constraints over floating point vari-
ables are a problem for DSE in practice. Table 5 shows that, for Alglib, over a
third of its methods contain constraints over floating point numbers that could
not be solved by either Z3 or a random search. For the QLNet library on the other
hand, this figure is much smaller at around 3% of its methods. This suggests that
it very much depends on the type of application being tested. Nevertheless, the
number of constraints per application (first column in Table 5) which cannot be
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Table 5. This table shows how often either the AVM or ES solvers have been in-
voked by Pex. ‘UM’ stands for ‘Unique Methods’ and shows the number of methods
that contained one or more constraints which could not be solved by Z3 or a random
search. The ‘Succ.’ columns show how often the AVM or ES solvers were successful,
while ‘Timeouts’ counts the number of times the AVM or ES were terminated after 20
seconds. The ‘Fail’ column lists the number of unsuccessful attempts by the AVM or
ES to find a solution. The numbers in brackets show the number of methods for which
the custom solvers were invoked, but did not receive any variables to optimize from
Pex.

Program Pex+AVM Pex+ES

Inv. (UM) Succ. Timeouts Fail Inv. (UM) Succ. Timeouts Fail
Alglib 1828 (220) 646 398 784 (269) 1170 (172) 521 153 496 (269)

QLNet 557 (93) 37 40 480 (0) 495 (87) 10 0 485 (0)

Success rate 28.64% 31.89%

solved by a random search or Z3, is large enough to present a problem in prac-
tice, especially, since this number will be higher if Pex is given more exploration
time.

The final part of the study was to analyze the data types of the variables
involved in floating point constraints, and the arithmetic operators over them.
Figure 3 shows that constraints passed to the AVM and ES solvers only included
variables of type double and integral types (e.g. short, int etc.). Thus, it is im-
portant that any approach dealing with constraints over floating point variables
can handle mixed floating point and integral type constraints.

Integral Double

Fig. 3. Distribution of the data types of
the variables passed to the AVM and ES
solvers.

Add Mul Div Exp Func

Fig. 4. Distribution of arithmetic oper-
ators in the constraints passed to the
AVM and ES solvers.

Figure 4 summarizes the observed arithmetic operators in the constraints
attempted by the AVM and ES solvers. Most commonly the constraints involved
multiplication of input variables, followed by the power operator (e.g. xy). These
two operators are likely to produce non–linear constraints, and thus are especially
hard for constraint solvers. The third most frequent operator was addition of two
variables, followed by system library calls involving floating point variables, such
as Double.IsNaN.
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4.5 Threats to Validity

Naturally there are threats to validity in any empirical study such as this. The
first issue to address is the internal validity of the experiments, i.e. whether
there has been a bias in the experimental design that could affect the obtained
results. One potential source of bias comes from the settings used for Pex and
the custom solvers. For the open source programs, the time out for Pex explo-
rations was set at 60 seconds, while constraint solvers were given 20 seconds
per invocation. These limits, together with the fitness budget of 100, 000 eval-
uations, were necessary to control the scope of the study. However, as a result,
the benefit of using the custom arithmetic solvers was diminished, because the
functions tested were so complex that they required longer execution times and
bigger fitness budgets.

Another potential source of bias comes from the inherent stochastic behavior
of the meta–heuristic search algorithms used in the custom solvers. The most
reliable (and widely used) technique for overcoming this source of variability is to
perform tests using a sufficiently large sample of result data. In order to ensure
a large sample size, experiments for the benchmark functions were repeated 30
times. The open source programs comprised 3, 731 functions, thus also providing
a large pool of data from which to draw observations.

A further source of bias includes the selection of the functions used in the em-
pirical study, which could potentially affect its external validity, i.e., the extent
to which it is possible to generalize from the results obtained. The benchmark
functions have been used to evaluate different optimization algorithms before,
thus were considered a good candidate to test Pex and each custom solver (imple-
menting an optimization algorithm) in the extreme. The open source programs
were chosen because they represent non-trivial sized programs and because they
contain complex floating point arithmetic. As with any empirical study such as
this, caution is required before making any claims as to whether these results
would be observed on other functions. More experiments are needed to validate
or refute such claims.

5 Conclusions

This paper has presented an extension to DSE for floating point computations,
based on SBST techniques. The extension has been implemented as a plug in for
the Microsoft Pex DSE testing tool. Results from a set of benchmark functions
show that it is possible to increase the effectiveness of what might be called
“vanilla DSE”. However, a study on two open source programs also shows that
for the solvers to be effective, they need to be given adequate resources in terms
of wall clock execution time, as well as a large fitness budget. Otherwise any
increase in coverage is, at best, marginal. More experiments are needed to check
if longer exploration times for Pex make the custom solvers more effective.
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